期刊文献+

离散变换算法在关键词检测系统中的研究

The Research on Discrete Transform Algorithm in the Keyword Spotting System
下载PDF
导出
摘要 (黑龙江科技大学)【摘要】阐述了一个在较强噪声环境下针对汉语非特定说话人的连续无限制语音流中检测出其中关键词语音的公交车路线查询系统.为增强其关键词语音信号提出了建立一种新的基于离散变换的语音增强算法.并对同一噪声环境下增强关键词语音信号的模型与未增强关键词语音信号的模型进行了比较,结果显示,采用增强语音信号强度的算法在提高关键词的检测率同时,有效地降低了误报率,系统的整体性能较好,具有一定的实用性. In this paper, the inquiry on bus route advance booking system is described, which aims at keyword speech and non - keyword speech that present to continuous unconditional speech stream for non - special speaker in Chinese small vocabulary. A new speech enhancent arithmetic based on discrete transform algorithm is offered in order to enhance the keyword speech. The comparison of keyword HMM based enhancent keyword speech with the keyword speech is done, the results show that the enhancent keyword speech has a great improvement in the probability detection for the keyword and falling the false report, the whole system has a better capability , having the practicability properly.
机构地区 黑龙江科技大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2013年第4期44-47,共4页 Natural Science Journal of Harbin Normal University
基金 2013年黑龙江省教育厅科学技术研究项目(12533054) 黑龙江省黑龙江科技学院引进高层次人才科研启动基金项目(06-132)
关键词 关键词检测 离散变换 语音增强 误报率 spotting Discrete transform Speech enhancent False declaration
  • 相关文献

参考文献5

二级参考文献11

  • 1[2]L R拉宾纳,R W谢弗.语音信号处理[M].朱雪龙.北京:科学出版社,1978.
  • 2[3]Ephraim Y.Statistical-Model-Based Speech Enhancement Systems[J].Proc IEEE, 1992,80(10):1526-1555.
  • 3[4]CAO Zhi-gang,ZHENG Wen-tao,LIU Zhi-yong.Speech Enhancement Algorithm and Realization Based on MMSE Estimation and Real-Time Realization[J]. Chinese journal of Electronics, 1993,2(2):1-5.
  • 4Woodland P C,Povey D.Large Scale Discriminative Training of Hidden Markov Models for Speech Recognition.Computer Speech & Language,2002,16(1):25-47.
  • 5Juang B H,Chou W,Lee C H.Minimum Classification Error Rate Methods for Speech Recognition.IEEE Trans on Speech and Audio Processing,1997,5(3):257-265.
  • 6Jiang Hui,Soong F,Lee C H.A Dynamic In-Search Data,Selection Method with Its Applications to Acoustic Modeling and Utterance Verification.IEEE Trans on Speech and Audio Processing,2005,13(5):945-955.
  • 7Liu Bo,Jiang Hui,Zhou Jianlai,et al.Discriminative Training Based on the Criterion of Least Phone Competing Tokens for Large Vocabulary Speech Recognition// Proc of the IEEE International Conference on Acoustic,Speech,and Signal Processing.Philadelphia,USA,2005,Ⅰ:117-120.
  • 8Povey D,Woodland P C.Minimum Phone Error and Ⅰ-Smoothing for Improved Discriminative Training//Proc of the IEEE International Conference on Acoustic,Speech,and Signal Processing.Orlando,USA,2002,Ⅰ:105-108.
  • 9Du Jun,Liu Peng,Soong F K,et al.Minimum Divergence Based Discriminative Training// Proc of the International Conference on Spoken Language Processing.Pittsburgh,USA,2006:2410-2413.
  • 10Normandin Y.Hidden Markov Models,Maximum Mutual Information Estimation,and the Speech Recognition Problem.Ph.D Dissertatiou.Montreal,Canada:McGill University.Department of Electrical Engineering,1991.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部