期刊文献+

基于方向多尺度变换和统计建模的纹理分类方法 被引量:3

Texture classification based on directional multiscale transform and statistical modeling
原文传递
导出
摘要 纹理是图像分析和识别中经常使用的关键特征,而小波变换则是图像纹理表示和分类中的常用工具.然而,基于小波变换的纹理分类方法常常忽略了小波低频子带信息,并且无法提取图像纹理的块状奇异信息.本文提出小波子带系数的局部能量直方图建模方法、轮廓波特征的Poisson混合模型建模方法和基于轮廓波子带系数聚类的特征提取方法,并将其应用于图像纹理分类上.基于局部能量直方图的纹理分类方法解决了小波低频子带的建模难题,基于Poisson混合模型的纹理分类方法则首次将Poisson混合模型用于轮廓子带特征的建模,而基于轮廓波域聚类的纹理分类方法是一种快速的分类方法.实验结果显示,本文所提出的三类方法都超过了当前典型的纹理分类方法. Texture is a key feature frequently used for image analysis and recognition, and wavelet transforms are common tools for image texture analysis and classification. However, wavelet-based texture classification methods usually neglect the information in the low-pass subband, and cannot capture piece-wise singularities contained in image texture. In this paper, we propose local energy histograms (LEHs) for modeling wavelet sub- band coefficients, Poisson mixture models (PMMs) for modeling contourlet subband features, and clustering for extracting contourlet subband features. Then, these LEH-based texture classification method alleviates modeling methods are utilized to texture classification. The the difficulty of modeling wavelet subband coei^icients, the PMM-based texture classification method is the first to model contourlet subband features using Poisson mixture models, and the texture classification method based on clustering in contourelet subands is a fast classification ap- proach. Experimental results reveal that our proposed methods outperform some current state-of-the-art texture classification methods.
作者 董永生
出处 《中国科学:数学》 CSCD 北大核心 2013年第11期1059-1070,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:60771061和61171138)资助项目 本学位论文荣获"2012年北京大学优秀博士学位论文"
关键词 方向多尺度变换 统计建模 Poisson混合模型 纹理分类 纹理检索 directional multiscale transform, statistical modeling, Poisson mixture model, texture classification, texture retrieval
  • 相关文献

参考文献25

  • 1董永生.基于方向多尺度变换和统计建模的纹理分类方法.博士学位论文.北京:北京大学,2012.
  • 2Dong Y, Ma J. Wavelet-based image texture classification using local energy histograms. IEEE Signal Process Lett, 2011, 18:247-250.
  • 3Dong Y, Ma J. Bayesian texture classification based on contourlet transform and BYY harmony learning of Poisson mixtures. IEEE Trans Image Process, 2012, 21:909-918.
  • 4Dong Y, Ma J. Feature extraction through contourlet subband clustering for texture classification. Neurocomputing, 2013, 116:157-164.
  • 5Dong Y, Ma J. Contourlet-based texture classification with product Bernoulli distributions. In: Lecture Notes in Computer Science, vol. 6676. New York: Springer, 2011, 9-18.
  • 6Dong Y, Ma J. Texture classification based on contourlet subband clustering. In: Lecture Notes in Computer Science, vol. 6839. New York: Springer, 2012, 421-426.
  • 7Dong Y, Ma J. Statistical contourlet subband characterization for texture image retrieval. In: Lecture Notes in Computer Science, vol. 7390. New York: Springer, 2012, 500-507.
  • 8Dong Y, Ma J. An efficient histogram-based texture classification method with weighted symmetrized Kullback-Leibler divergence. In: Lecture Notes in Computer Science, vol. 7368. New York: Springer, 2012, 46-55.
  • 9Choy S K, Tong C S. Statistical properties of bit-plane probability model and its application in supervised texture classification. IEEE Trans Image Process, 2008, 17:1399-1405.
  • 10Selvan S, Ramakrishnan S. SVD-based modeling for image texture classification using wavelet transformation. IEEE Trans Image Process, 2007, 16:2688-2696.

同被引文献24

  • 1郑君杰,黄峰,张韧,董兆俊.基于纹理与分形理论的气象卫星云图目标物识别[J].气象科学,2005,25(3):244-248. 被引量:21
  • 2齐东旭,陶尘钧,宋瑞霞,马辉,孙伟,蔡占川.基于正交完备U-系统的参数曲线图组表达[J].计算机学报,2006,29(5):778-785. 被引量:24
  • 3刘玉杰,李宗民,李华,齐东旭.三维U系统矩与三维模型检索[J].计算机辅助设计与图形学学报,2006,18(8):1111-1116. 被引量:11
  • 4Zhang D S, Lu G J. Review of shape representation and description techniques. Pattern Recogn, 2004, 37:1-19.
  • 5Zhang D S, Zhao J Y, Saddik A E. RST invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE Trans Circ Syst Video Teehnol, 2003, 13:753-765.
  • 6Kang X G, Huang J W, Zeng W J. Efficient general print-scanning resilient data hiding based on uniform log-polar mapping. IEEE Trans Inform Forensics Secur, 2010, 5:1-12.
  • 7Traver V J, Bernardino A. A review of log-polar imaging for visual perception in robotics. Robot Auton Syst, 2010, 58:378-398.
  • 8Wolberg g, Zokai S. Robust image registration using log-polar transform. IEEE Inter Confer Image Process, 2000, 1: 493-496.
  • 9Zokai S, Wolberg G. Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations. IEEE Trans Image Process, 2005, 14:1422-1434.
  • 10Solari F, Chessa M, Sabatini S P. Design strategies for direct multi-scale and multi-orientation feature extraction in the log-polar domain. Pattern Recogn Lett, 2012, 33:41-51.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部