期刊文献+

关于有限p-群的正规闭包的一些条件

Some conditions on normal closure in finite p-groups
原文传递
导出
摘要 Berkovich提出了研究满足下列条件的有限p-群G,对于G的每一个非正规子群H满足(N1)exp(H)=exp(HG);(N2)|HG:H|≤p;(N3)HG=HG′.本文首先研究满足条件(N3)的有限p-群,然后讨论满足条件(N1),(N2)和(N3)的有限p-群. Berkovich posed the following problem: study the finite p-group G which satisfies the conditions that, for each non-normal subgroup H of G, (N1) exp(H) -- exp(HG); (N2) [HG : HI ≤ p; (N3) HG = HG'. In this paper, we first study the finite p-groups satisfying Condition (N3), and then study the finite p-groups satisfying Conditions (N1), (N2) and (N3).
出处 《中国科学:数学》 CSCD 北大核心 2013年第11期1103-1112,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11001226 11271301和11071155) 中央高校基本科研业务费专项资金(批准号:XDJK2012B006)资助项目
关键词 有限P-群 正规闭包 亚循环p-群 finite p-groups, normal closures metabelian p-groups
  • 相关文献

参考文献10

  • 1Guo X, Wang J. On generalized Dedekind groups. Acta Math Hungar, 2009, 122:3~44.
  • 2Herzog M, Longobardi P, Maj M, et al. On generalized Dedekind groups and Tarski super Monsters. J Algebra, 2000 226:690-713.
  • 3Berkovich Y. Groups of Prime Power Order. Berlin: Walter de Gruyter, 2008.
  • 4Hall P. A contribution to the theory of groups of prime power order. Proc Lond Math Soc (3), 1933, 36:29-95.
  • 5Lv H, Zhou W, Guo X. Finite 2-groups with index of every cyclic subgroup in its normal closure no greater than 4. J Algebra, 2011, 342:256-264.
  • 6Lv H, Zhou W, Yu D. Some finite p-groups with bounded index of every cyclic subgroup in its normal closure. J Algebra, 2011, 338:169-179.
  • 7Brisley W, Macdonald I D. Two classes of metabelian p-groups. Math Z, 1969, 112:5-12.
  • 8Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag, 1967.
  • 9Berkovich Y. On subgroups of finite p-groups. J Algebra, 2000, 224:198-240.
  • 10Janko Z. A classifcation of fnite 2-groups with exactly three involutions. J Algebra, 2005, 291:505-533.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部