期刊文献+

基于两帧差分平均移相算法标定斐索型波长移相干涉仪 被引量:3

Calibration of Fizeau Wavelength-Tuned Phase-Shifting Interferometer Based on Two-Frame Differential Average Phase-Shifting Algorithm
原文传递
导出
摘要 波长移相干涉仪的移相值与干涉腔长度有关,需要对其标定方可采用定步长移相算法计算相位分布。为了标定研制的斐索型波长移相干涉仪,提出一种利用干涉图直接计算定步长移相值的新算法两帧差分平均移相算法(TDA)。对该算法进行模拟仿真,验证了算法的可行性和计算精度,并进一步开展了实验研究。结果表明:运用TDA算法处理定步长移相干涉图可以获得与实际值接近的计算结果;利用TDA算法标定的波长移相干涉仪的测量面形均方根(RMS)重复性优于0.07nm(1.106λ/10000),达到了设计指标;用该干涉仪与Zygo干涉仪对相同元件进行比较测量,检测结果之差的RMS为0.742nm。 It is necessary to calibrate the optical path length before using wavelength-tuned phase-shifting interferometer based on fixed step phase-shifting algorithm to compute the phase distribution, as the precision of measurements depends on the step value. To implement the calibration for the interferometer, a new algorithm named two-frame differential average phase-shifting algorithm (TDA) is proposed to calculate phase shift directly by using the interference figure. Simulation and theory analysis are adopted to verify the accuracy and practicability of the algorithm. Furthermore, related experiments are made. The result indicates that by handling the fixed step phase-shifting interferograms with TDA, the result which matches well with the real value can be obtained~ the root mean square (RMS) repeatability is better than 0. 07 nm(1. 106)t/10000), which meets the design index; by comparing the measurement results for the same component with this interferometer and Zygo interferometer, the RMS of the difference is 0. 742 nm.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第11期210-216,共7页 Chinese Journal of Lasers
基金 国家科技重大专项(2009ZX02205)
关键词 测量 波长移相干涉仪标定 移相算法 可调谐半导体激光器 measurement wavelength-tuned phase-shifting interferometer calibration phase-shifting algorithm tunable semiconductor laser
  • 相关文献

参考文献5

二级参考文献67

共引文献35

同被引文献23

  • 1左芬,陈磊.同步移相抗振光干涉测量技术研究进展[J].激光与光电子学进展,2006,43(11):43-48. 被引量:6
  • 2C R Wolfe, J K Lawson. The measurement and analysis of wavefront structure from large aperture ICF optics[C]. SPIE, 1995, 2633: 361-385.
  • 3Leslie L Deck, James A Soobitsky. Phase-shifting via wavelength tuning in very large aperture interferometers[C]. SPIE, 1999, 3782: 432-442.
  • 4Chiayu Ai, Robert Knowlden, Joseph Lamb. Design of a 24-in phase shifting interferometer[C]. SPIE, 1996, 2870: 565-572.
  • 5Zhaoyang Wang, Bongtae Han. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms [J]. Opt Lett, 2004, 29(14): 1671-1673.
  • 6Thomas Kreis. Digital holographic interference-phase measurement using the Fourier-transform method [J] . J Opt Soc Am A, 1986, 3(6): 847-855.
  • 7L I Muravsky, O P Ostash, A B Kmet, et al: Two-frame phase-shifting interferometry for retrieval of smooth surface and its displacements[J]. Opt Laser Eng, 2011, 49: 305-312.
  • 8X F Xu, L Z Cai, Y R Wang, et al: Simple direct extraction of unknown phase shift and wavefront reconstruction ingeneralized phase-shifting interferometry: Algorithm and experiments[J]. Opt Lett, 2008, 33(8): 776-778.
  • 9Wenhu Niu, Liyun Zhong, Peng Sun, et al: Two-step phase retrieval algorithm based on the quotient of inner products of phase-shifting interferograms[J]. J Opt, 2015, 17: 085703.
  • 10Jian Deng, Hankun Wang, Fengjie Zhang, et al: Two-step phase demodulation algorithm based on extreme value of interference[J]. Opt Lett, 2012, 37(22): 4669-4671.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部