期刊文献+

一种改进的大尺度高光谱流形降维算法 被引量:6

Improved Dimensionality Reduction Algorithm of Large-Scale Hyperspectral Scenes Using Manifold
原文传递
导出
摘要 经典流形算法等距映射(ISOMAP)和局部线性嵌入(LLE)可以对高光谱数据进行降维,但不能解决大尺度高光谱图像的流形降维难题。详细论述了ISOMAP和LLE在大尺度高光谱流形降维中遇到的问题,提出了一种基于增量等距映射(IISOMAP)和LLE结合的高光谱流形降维算法IISOMAP-LLE,并针对流形降维算法较线性降维算法最小噪声分离(MNF)可以更好地发掘出高光谱数据中的非线性结构的优点,通过AVIRIS和OMIS-II数据实验验证了算法的可行性和优越性,并证明了IISOMAP-LLE算法可以避免增强型等距映射(ENH-ISOMAP)中由于Landmark点选取不当而造成的本征维数较大时类间可分性反而低于MNF的缺点。 It is practicable for dimensionality reduction of hyperspectral scenes using manifold algorithm such as isometric mapping (ISOMAP) and local linear embedding (LLE). However the two classical manifold algorithm are not suitable for solving the large-scale hyperspectral scenes. We elaborate the problems encountered in applying ISOMAP and LLE to dimensionality reduction of large-scale hyperspectral scenes, then an improved algorithm called IISOMAP-LLE, which is based on incremental isometric mapping (IISOMAP) and LLE, is proposed to represent the nonlinear structure of hyperspectral imagery that linear algorithm minimum noise fraction (MNF) could not discover. At last we demonstrate two experiments using large-scale AVIRIS and OMIS-II hyperspectral scenes to illustrate the approach. Experimental results prove that the IISOMAP-LLE not only is much better than linear algorithm MNF but also can avoid superiority decline of separability compared with MNF that encounterd in enhanced isometric mapping.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第11期267-276,共10页 Acta Optica Sinica
基金 国家自然科学基金(61272025) 高等学校博士学科点专项科研基金联合项目(20113401120006)
关键词 遥感 高光谱遥感 大尺度高光谱流形降维 增量等距映射 增强型等距映射 最小噪声分离 remote sensing hyperspectral remote sensing manifold dimensionality reduction of large-scale scenes incremental isometric mapping enhanced isometric mapping minimum noise frarction
  • 相关文献

参考文献24

  • 1童庆禧,张兵,郑兰芬,等.高光谱遥感[M].北京:高等教育出版社,2006.
  • 2A N Gorban, Balazs Kegl, D C WunsehII, et al.. Principal Manifolds for Data Visualization and Dimension Reduction [M]. Berlin: Springer-Verlag Berlin and Heideberg GmbH b- Co. K, 2007.
  • 3杜培军,王小美,谭琨,夏俊士.利用流形学习进行高光谱遥感影像的降维与特征提取[J].武汉大学学报(信息科学版),2011,36(2):148-152. 被引量:40
  • 4J B Tenenbaum, V De Silva, J C Langford. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500) : 2319--2323.
  • 5S T Roweis, L K Saul. Nonlinear dimensionality reduction by locally linear embedding [J]- Science, 2000, 290(5500) 2323- 2326.
  • 6Y Chen, M M Crawford, J Ghosh. Applying nonlinear manifold learning to hyperspectral data for land cover classification [C]. International Geoscience and Remote Sensing Symposium, Seoul, 2005, 6 4311.
  • 7D Guangjun, Z Yongsheng, J Song. Dimensionality reduction of hyperspectral data based on ISOMAP algorithm [C]. ICEMI'07.8th International Conference on Electronic Measurement and Instruments, IEEE, Xi'an,2007: 3-935--3-938.
  • 8X R Wang, S Kumar, T Kaupp, et al.. Applying ISOMAP to the learning of hyperspectral image [C]. Proceedings of the 2005 Australasian Conference on Robotics Automation. Australian Robotics Automation Association, Sydney, 2005.
  • 9C M Bachmann, T L Ainsworth, R A Fusina, et al.. Manifold coordinate representations of hyperspectral imagery: improvements in algorithm performance and computational efficiency [C]. Geoseience and Remote Sensing Symposium (IGARSS), 2010 IEEE International. IEEE, Honolulu, 2010 4244--4247.
  • 10C M Bachmann, T L Ainsworth, R A Fusina. Exploiting manifold geometry in hyperspectral imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (3): 441 --454.

二级参考文献14

  • 1Hughes G F. On the Mean Accuracy of Statistical Pattern Recognition[J]. IEEE Trans Inf Theory, 1968, IT-14(1):55-63.
  • 2Kumar S, Ghosh J, Crawford M M. Best-Bases Feature Extraction Algorithms for Classification of Hyperspeetral Data [J]. IEEE Trans Geosci and Rem Sens, 2001, 39(7): 1 368-1 379.
  • 3Hsu P H. Feature Extraction of Hyperspectral Ima- ges Using Wavelet and Matching Pursuit [J]. IS- PRS Journal of Photogrammetry & Remote Sens- ing, 2007,62:78-92.
  • 4Du Qian, He Yang. Similarity-based Unsupervised Band Selection for Hyperspectral Image Analysis [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 564-568.
  • 5Tenenbaum J, Silva D D , Langford J . A Global Geometric Framework for Nonlinear Dimensionality Reduction[J] . Science, 2000, 290 (5 500) : 2 319 -2 323.
  • 6Roweis S, Saul L. Nonlinear Dimensionality Reduc- tion by Locally Linear Embedding [J]. Science, 2000, 290(5 500) : 2 323 - 2 326.
  • 7Junping Z, Li S Z, Jue W. Manifold Learning and Applications in Recognition in Intelligent Multime- dia Processing with Soft Computing [M]. Heidel- berg: Springer-Verlag, 2004.
  • 8Mikhail B, Parth N. Laplacian Eigenmaps for Di- mensionality Reduction and Data Representation [J]. Neural Computation, 2003, 15(6): 1 373- 1 396.
  • 9Zhang Zhenyue, Zha Hongyuan. Principal Mani- folds and Nonlinear Dimensionality Reduction Via Tangent Space Alignment [ J]. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338.
  • 10Trevor C, Michael C. Multidimensional Scaling [M]. London: Chapman & Hail, 1994.

共引文献61

同被引文献79

  • 1路威,余旭初,马永刚,刘娟.高光谱遥感影像海上舰船目标检测算法的研究[J].海洋测绘,2005,25(4):8-12. 被引量:7
  • 2宋枫溪,张大鹏,杨静宇,高秀梅.基于最大散度差鉴别准则的自适应分类算法[J].自动化学报,2006,32(4):541-549. 被引量:17
  • 3贺霖,潘泉,邸韡,赵永强.一种基于单似然检验的高光谱图像小目标检测器[J].光学学报,2007,27(12):2155-2162. 被引量:12
  • 4C S Hernandez, D S Boyd, G M Foody. One-class classification for mapping a specific land-cover class: SVDD classification of {enland [J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (4) : 1061 -- 1073.
  • 5G Bilgin, S Erturk, T Yildirim. Segmentation of hyperspeetral images via subtractive clustering and cluster validation using one-class support vector machines [J]. IEEE Geoscience and Remote Sensing, 2011, 49(8): 2836--2844.
  • 6P Gurram, H Kwon. Sparse kernel-based hyperspectral anomaly detection [J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5) : 943--947.
  • 7B Cyganek. One-class support vector ensembles for image segmentation and classification [J].Journal of Mathematical Imaging and Vision, 2012, 42(2-3): 103-117.
  • 8D M J Tax, R P W Duin. Support vector data description [J]. Machine Learning, 2004, 54(1) : 45-56.
  • 9L K Hansen, P Salamon. Neural network ensembles [J]. IEEE Pattern Analysis and Machine Intelligence, 1990, 12(10) : 993--1001.
  • 10L Breiman. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123--140.

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部