期刊文献+

无限图上带吸收项的热方程解的熄灭和正性 被引量:5

Extinction and positivity of solutions of the heat equation on infinite graph
原文传递
导出
摘要 讨论了无限的、局部有限的、连通图上带吸收项的热方程的非平凡解的大时间行为.利用比较原理和能量方法,证明了其非平凡解在q<1时熄灭,而在q≥1时保持严格的正性. In this paper,we mainly study the large time behaviors of the nontrivial solutions for the heat equation with the absorption term on the infinite,locally finite, connected graphs. Based on the comparison principle and the en- ergy method,we finally prove that the the solution becomes extinct for q 〈 1 ,and remains strictly positive for q≥l.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期727-730,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金天元基金青年项目(11226190) 伊犁师范学院一般科研计划项目(2012YB016)
关键词 热方程 吸收项 熄灭 正性 heat equation absorption extinction positivity
  • 相关文献

参考文献11

  • 1CHUNG S Y, BERENSTEIN C A. ω- Harmonic function and inverse conductivity problems on networks [ J ]. SIAM J Appl Math,2005,56(4) :1 200- 1 226.
  • 2CHUNG S Y, CHUNG Y S, KIM J H. Diffusion and elastic equations on networks[ J]. Publ Res Inst Math Sci ,2007,43 (3) : 699- 725.
  • 3TRINAJSTIC N,BABIC D,NIKOLI S. The Laplaeian matrix in chemistry[J]. J Chem Inf Comput Sei,1994,34(2) :368- 376.
  • 4ZAKRZEWSKI W J. Laplacians on lattices[ J]. J Nonlinear Math Phys ,2005,12(4) :530- 538.
  • 5ELMOATAZ A, LEZORAY O, BOUGLEUX S. Nonlocal discrete regularization on weighted graphs:a framework for image and manifold processing [ J ]. IEEE Tans Image Process, 2008,17 (7) : 1 047 - 1 060.
  • 6TA V T, LEZORAY O, ELMOATAZ A, et al. Graph -based tools for microscopic cellular image segmentation [ J ]. Pattern Recognition, 2009,42 (6) : 1 113- 1 125.
  • 7CHUNG Y S, LEE Y S, CHUNG S Y. Extinction and positivity of the solutions of the heat equations with absorption on net- works[J]. J Math Anal Appl,2011,380(2) :642- 652.
  • 8WOJCIECHOWSIK R K. Heat kerel and essential spectrum of infinite graphs [ J ]. Indiana University Mathematics Journal, 2009,58(2) :1 419- 1 441.
  • 9陈大学,周树清,夏学文,龙玉花.偶数阶非线性中立型阻尼微分方程的振动性与渐近性[J].云南大学学报(自然科学版),2007,29(6):551-559. 被引量:3
  • 10刘诗焕,朱先阳.阻尼Boussinesq方程初边值问题解的渐近性[J].云南大学学报(自然科学版),2012,34(6):621-628. 被引量:1

二级参考文献16

  • 1顾永耕,吴在德.一类非线性抛物型方程整体解的存在性和衰减估计[J].数学学报(中文版),1989,32(4):535-550. 被引量:3
  • 2陈大学,周树清.高阶非线性中立型微分方程的振动性[J].湖南师范大学自然科学学报,2006,29(1):1-4. 被引量:6
  • 3陈大学,周树清,龙玉花.一类二阶中立型非线性阻尼泛函微分方程的振动准则[J].湖南工程学院学报(自然科学版),2006,16(3):68-72. 被引量:2
  • 4顾永耕,Sci Chin A,1983年,26卷,1期,1129页
  • 5SAHINER Y. On oscillation of second order neutral type delay differential equations[J]. Appl Math Comput,2004,150(3): 697-706.
  • 6PHILOS CH G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations[ J]. Bull Acad Pol Sci Ser Sci Mat, 1981,39(1) :61-64.
  • 7WONG J S W. Necessary and sufficient conditions for oscillation of second order neutral differential equations [ J]. J Math Anal Appl, 2000,252(1) : 342-352.
  • 8GRAMMATIKOPOULOS M K, LADAS G, MEIMARIDOU A. Oscillation of second order neutral delay differential equa- tions[ J]. Rat Mat, 1985,1 (1) : 267-274.
  • 9LIN X Y. Oscillation of second order nonlinear neutral differential equations[J].J Math Anal Appl,2005,309(2):442-452.
  • 10YANG Q G, YANG L J, ZHU S M. Interval criteria for oscillation of second order nonlinear neutral differential equations[J]. Comput Math Appl,2003,46(5-6) :903-918.

共引文献22

同被引文献12

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2鲍卫东.Δu-a(x)u+b(x)u^p=0奇解的渐近性质[J].数学的实践与认识,2006,36(6):229-235. 被引量:1
  • 3Chung S Y, Berenstein C A. co - Harmonic function and inverse conductivity problems on networks [ J ]. SIAM J Appl Math, 2005,56(4) : 1200 - 1226.
  • 4Chung S Y,Chung Y S,Kim J H. Diffusion and elastic equations on networks[J]. Publ Res Inst Math Sei,2007,43(3) : 699 - 725.
  • 5Elmoataz A, Lezoray O, Bougleux S. Nonloeal discrete regularization on weighted graphs:a framework for image and manifold processing [ J ]. IEEE Tans Image Process, 2008,17 ( 7 ) : 1047 - 1060.
  • 6Trinajstic N, Babie D, Nikoli S. The Laplacian matrix in chemistry [ J ]. J Chem Inf Comput Sei, 1994,34 ( 2 ) :368 - 376.
  • 7Zakrzewski W J. Laplacians on lattices [ J ]. J Nonlinear Math Phys, 2005,12 (4) :530 - 538.
  • 8Ta V T, Lezoray O, Elmoataz A, et al. Graph - based tools for microscopic cellular image segmentation [ J ]. Pattern Recognition, 2009,42(6) :1113 - 1125.
  • 9Lee Y S, Chung S Y. Extinction and positivity of solutions of the p - Laplaeian evolution equation on networks [ J ]. J Math Anal Appl,2012,386(2) :581 -592.
  • 10Gilboa G, Osher S. Nonlocal linear Image regularization and supervised segmentation[ J ]. Multiscale Model Simul, 2007,6 (2) : 595 - 630.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部