期刊文献+

Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation 被引量:2

Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation
原文传递
导出
摘要 Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features. Defining an appropriate metric tensor and designing an efficient algorithm for anisotropic mesh gen- eration are two important aspects of the anisotropic mesh methodology. In this paper, we are concerned with the natural metric tensor for use in anisotropic mesh generation for anisotropic elliptic problems. We provide an algorithm to generate anisotropic meshes under the given metric tensor. We show that the inverse of the anisotropic diffusion matrix of the anisotropic elliptic problem is a natural metric tensor for the anisotropic mesh generation in three aspects: better discrete algebraic systems, more accurate finite element solution and superconvergence on the mesh nodes. Various numerical examples demonstrating the effectiveness are presented. Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features.Defning an appropriate metric tensor and designing an efcient algorithm for anisotropic mesh generation are two important aspects of the anisotropic mesh methodology.In this paper,we are concerned with the natural metric tensor for use in anisotropic mesh generation for anisotropic elliptic problems.We provide an algorithm to generate anisotropic meshes under the given metric tensor.We show that the inverse of the anisotropic difusion matrix of the anisotropic elliptic problem is a natural metric tensor for the anisotropic mesh generation in three aspects:better discrete algebraic systems,more accurate fnite element solution and superconvergence on the mesh nodes.Various numerical examples demonstrating the efectiveness are presented.
出处 《Science China Mathematics》 SCIE 2013年第12期2615-2630,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11031006 and 11201397) Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1179) International Science and Technology Cooperation Program of China(Grant No.2010DFR00700) Hunan Education Department Project(Grant No.12B127) Hunan Provincial National Science Foundation Project(Grant No.12JJ4004)
关键词 anisotropic mesh metric tensor SUPERCONVERGENCE anisotropic elliptic equation 各向异性网格 网格生成方法 椭圆方程 度规张量 度量 自然 生日 各向异性扩散
  • 相关文献

参考文献47

  • 1Ait-Ali-Yahia D, Baruzzi G, Habashi W G, et al. Anisotropic mesh adaptation: Towards user-independent, mesh- independent and solver-independent cfd, II: Structured grids. Internat J Numer Methods Fluids, 2002, 39:657-673.
  • 2Alauzet F, Loseille A, Dervieux A, et al. Multi-dimensional continuous metric for mesh adaptation. In: Proceedings of the 15th International Meshing Roundtable. New York: Springer-Verlag, 2006, 191-214.
  • 3Apel T. Anisotropic Finite Elements: Local Estimates and Applications. Stuttgart: Teubner, 1999.
  • 4Ashby S F, Bosl W J, Falgout R D, et al. A numerical simulation of groundwater flow and contaminant transport on the cray t3d and c90 supercomputers. Internat J High Performance Comput Appl, 1999, 13:80 93.
  • 5Boissonnat J D, Wormser C, Yvinec M. Anisotropic delaunay mesh generation. Preprint, 2011.
  • 6Borouchaki G, George P L, Hecht F, et al. Delaunay mesh generation governed by metric specifications, I: Algorithms. Finite Elem Anal Des, 1997, 25:61-83.
  • 7Borouchaki H, George P L, Mohammadi B. Delaunay mesh generation governed by metric specifications, II: Applica- tions. Finite Elem Anal Des, 1997, 25:85-109.
  • 8Bossen F J, Heckbert P S. A pliant method for anisotropic mesh generation. In: 5th International Meshing Roundtable. Sandia: Sandia National Laboratories, 1996, 63-74.
  • 9Briggs W L, Henson V E, McCormick S F. A Multigrid Tutorial. Philadelphia: SIAM, 2000.
  • 10Buscaglia G C, Dari E A. Anisotropic mesh optimization and its application in adaptivity. Internat J Numer Methods Engrg, 1997, 40:4119-4136.

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部