期刊文献+

Approximate acoustic cloaking in inhomogeneous isotropic space

Approximate acoustic cloaking in inhomogeneous isotropic space
原文传递
导出
摘要 We consider the approximate acoustic cloaking in an inhomogeneous isotropic background space.By employing transformation media,together with the use of a sound-soft layer lining right outside the cloaked region,we show that one can achieve the near-invisibility by the"blow-up-a-small-region"construction.This is based on novel scattering estimates corresponding to multiple multi-scale obstacles located in an isotropic space.We develop a novel system of integral equations to decouple the nonlinear scattering interaction among the small obstacle components,the regular obstacle components and the inhomogeneous background medium. We consider the approximate acoustic cloaking in an inhomogeneous isotropic background space. By employing transformation media, together with the use of a sound-soft layer lining right outside the cloaked region, we show that one can achieve the near-invisibility by the "blow-up-a-small-region" construction. This is based on novel scattering estimates corresponding to multiple multi-scale obstacles located in an isotropic space. We develop a novel system of integral equations to decouple the nonlinear scattering interaction among the small obstacle components, the regular obstacle components and the inhomogeneous background medium.
出处 《Science China Mathematics》 SCIE 2013年第12期2631-2644,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11101414 11201453 91130022 and 91130026) National Science Foundation of USA(Grant No.DMS 1207784)
关键词 transformation optics approximate invisibility cloaking scattering estimates integral operatorequations 非均匀各向同性 背景空间 隐形 声学 非线性散射 生日 积分方程组 不可见性
  • 相关文献

参考文献24

  • 1Ammari H, Gamier J, Jugnon V, et al. Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions. Contemp Math, 2012, 577:1 24.
  • 2Ammari H, Kang H. Reconstruction of Small Inhomogeneities from Boundary Measurements. In: Lecture Notes in Math, vol. 1846. Berlin: Springer-Verlag, 2004.
  • 3Ammari H, Kang H, Lee H, et al. Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Comm Math Phys, 2013, 317:253 266.
  • 4Ammari H, Kang H, Lee H, et al. Enhancement of near-cloaking. Part II: The Helmholtz equation. Comm Math Phys, 2013, 317:485-502.
  • 5Colton D, Kress R. Integral Equation Method in Scattering Theory. New York: Wiley, 1983.
  • 6Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. Berlin: Springer-Verlag, 1998.
  • 7Greenleaf A, Kurylev Y, Lassas M, et al. Improvement of cylindrical cloaking with SHS lining. Optics Express, 2007, 15:12717-12734.
  • 8Greenleaf A, Kurylev Y, Lassas M, et al. Isotropic transformation optics: Approximate acoustic and quantum cloaking. New J Phys, 2008, 10:115024.
  • 9Greenleaf A, Lassas M, Uhlmann G. On nonuniqueness for Calderdn's inverse problem. Math Res Lett, 2003, I0: 685-693.
  • 10Isakov V. On uniqueness in the inverse transmission scattering problem. Comm Partial Differential Equations, 1990, 15:1565 1587.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部