摘要
This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument. With the help of the a posteriori error estimator developed in this work, we will further propose an adaptive time stepping strategy. A number of numerical experiments are performed to illustrate the reliability and efficiency of the a posteriori error estimates and to assess the effectiveness of the proposed adaptive time stepping method.
This work is concerned with time stepping fnite element methods for abstract second order evolution problems.We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument.With the help of the a posteriori error estimator developed in this work,we will further propose an adaptive time stepping strategy.A number of numerical experiments are performed to illustrate the reliability and efciency of the a posteriori error estimates and to assess the efectiveness of the proposed adaptive time stepping method.
基金
supported by National Natural Science Foundation of China(Grant Nos.11171219
11161130004 and 11101199)
E-Institutes of Shanghai Municipal Education Commission(Grant No.E03004)
Program for New Century Excellent Talents in Fujian Province University(Grant No.JA12260)