期刊文献+

An adaptive time stepping method with efcient error control for second-order evolution problems 被引量:1

An adaptive time stepping method with efcient error control for second-order evolution problems
原文传递
导出
摘要 This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument. With the help of the a posteriori error estimator developed in this work, we will further propose an adaptive time stepping strategy. A number of numerical experiments are performed to illustrate the reliability and efficiency of the a posteriori error estimates and to assess the effectiveness of the proposed adaptive time stepping method. This work is concerned with time stepping fnite element methods for abstract second order evolution problems.We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument.With the help of the a posteriori error estimator developed in this work,we will further propose an adaptive time stepping strategy.A number of numerical experiments are performed to illustrate the reliability and efciency of the a posteriori error estimates and to assess the efectiveness of the proposed adaptive time stepping method.
出处 《Science China Mathematics》 SCIE 2013年第12期2753-2771,共19页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11171219 11161130004 and 11101199) E-Institutes of Shanghai Municipal Education Commission(Grant No.E03004) Program for New Century Excellent Talents in Fujian Province University(Grant No.JA12260)
关键词 a posteriori error analysis adaptive algorithm RECONSTRUCTION evolution problems 自适应时间 差错控制 进化 二阶 后验误差估计 生日 有限元方法 数值实验
  • 相关文献

参考文献22

  • 1Akrivis G, Chatzipantelidis P. A posteriori error estimates for the two-step backward differentiation formula method for parabolic equations. SIAM J Numer Anal, 2010, 48:109-132.
  • 2Akrivis G, Makridakis C, Nochetto R H. A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math Comp 2006, 75:511 531.
  • 3Akrivis G, Makridakis C, Nochetto R H. Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer Math, 2009, 114:133-160.
  • 4Akrivis G, Makridakis C, Nochetto R H. Galerkin and Runge-Kutta methods: Unified formulation, a posteriori error estimates and nodal superconvergence. Numer Math, 2011, 118:429-456.
  • 5Chen Z, Feng J. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math Comp, 2004, 73:1167-1193.
  • 6Hughes T J R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover Publications, 2000.
  • 7Kessler D, Nochetto R H, Schmidt A. A posteriori error control for the Allen-Cahn problem: Circumventing Gronwall's inequality. ESAIM-Math Model Numer, 2004, 38:129-142.
  • 8Lai J, Huang J, Chen C. Vibration analysis of plane elasticity problems by the C-continuous time stepping finite element method. Appl Numer Math, 2009, 59:905-919.
  • 9Lai J, Huang J, Shi Z. Vibration analysis for elastic multi-beam structures by the C-continuous time-stepping finite element method. Int J Numer Meth Biomed Engng, 2010, 26:205-233.
  • 10Makridakis C, Nochetto R H. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer Math, 2006, 104:489-514.

同被引文献9

  • 1Thomee V. Galerkin finite element methods for parabolic problems[M]. 2nd. ed. Berlin: Springer-Verlag, 2006.
  • 2Lai J, Huang J, Chen C. Vibration analysis of plane elasticity problems by the continuous time stepping finite element method[J]. Applied Numerical Mathematics, 2009, 59(5):905-919.
  • 3Hulbert G. Time finite element methods for structural dynamics [J]. International Journal for Numerical Methods in Engineering, 1992, 33: 307-331.
  • 4Quarteroni A, Valli A. Numerical approximation of partial differential equations[M]. Bedim Springer-Verlag, 1994.
  • 5Adams R A, Fournier J. Sobolev spaces [M]. 2nd. ed. New York: Academic Press, 2003.
  • 6Brenner S C, Scott L R. The mathematical theory of finite element methods[M]. 3rd. ed. Berlin: Springer-Verlag, 2008.
  • 7Adjerid S, Temimi H. A discontinuous Galerkin method for the wave equation [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200:837-849.
  • 8赖军将,王强,黄建国.二阶双曲型方程的C^0-连续一次有限元法[J].上海交通大学学报,2008,42(12):2065-2069. 被引量:3
  • 9赖军将.二阶常微初值问题的时间间断最小二乘有限元法[J].应用数学与计算数学学报,2012,26(1):35-44. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部