期刊文献+

关于保不交算子的注记

Notes on the Disjointness Preserving Operator
下载PDF
导出
摘要 利用f-模理论讨论了保不交算子与A-线性算子之间的关系.研究了保不交算子的逆算子与共轭算子的A-线性、保区间性以及保不交性. Based on the theory of f-module, the relationships between the disjointness preserving operator and the A-linear operator are obtained. Moreover, the A-linear property, and the interval preserving and disjointness preserving properties of the inverse and the adjoint of a disjointness preserving operator are discussed.
作者 冯颖 陈金喜
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第10期75-78,共4页 Journal of Southwest University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金项目(2682013CX036 SWJTU11CX154) 国家自然科学基金资助项目(61100046)
关键词 保不交算子 f-模 中心 A-线性算子 disjointness preserving operator f-module center A-linear operator
  • 相关文献

参考文献8

  • 1ALIPRANTIS C D, BURKINSHAW O. Positive Operators [M]. Orlando: Academic Press, 1985: 88-126.
  • 2LUXEMBERG W A J, PAGTER B D. Maharam Extensions of Operators and f-Modules [J]. Positivity, 2002, 6(6) : 147-190.
  • 3TURAN B. On f-Linearity and f-Orthomorphisms [J]. Positivity, 2000, 4(4) : 293-301.
  • 4HART D R. Some Properties of Disjointness Preserving Operators [J]. Math Proc A, 1985, 88(1): 183-197.
  • 5HUIJSMANS C B, WICKSTEAD A W. The Inverse of Band Preserving and Disjointness Preserving Operators[J]. Ind- ag Math, 1992, 3(2): 179-183.
  • 6TURAN B. On Ideal Operators [J]. Positivity, 2003, 7(7): 141-148.
  • 7冯颖,陈滋利,冯天祥.一类经典Banach格上保不交算子的矩阵刻画[J].西南交通大学学报,2003,38(4):438-440. 被引量:3
  • 8冯颖.格序代数二次序共轭的一个注[J].西南师范大学学报(自然科学版),2008,33(3):15-18. 被引量:3

二级参考文献11

  • 1Zaanen A C. Introduction to operator theory in Riesz space[ M]. Berlin : Sping-Verlag, 1997: 13-53.
  • 2Melyer M. Le stabilisateur d' un espace vectoriel reticule[J]. C. R. Acad. Sci. , 1976;A283: 249-250.
  • 3Pagter B De . A note on disjointness preserving operators[J]. Proc. Amer. Math. , 1984; 90: 534-549.
  • 4Abramovich C D,Kitover A K. A solution to a problem on invertible disjointness preserving operators[J]. Proc. Amer.Math. , 1998 ; 126 : 1501-1505.
  • 5Aliprantis C D, Burkinshaw O. Positive operators [ M ]. Orlando: Academic Press, 1985 : 74-126.
  • 6Angus E T. Introduction to functional analysis[M]. New York: John Wiley & Sons,Inc. , 1970: 219-223.
  • 7Huijsmans C B, Pagter B de. The Order Bidual of Lattice Ordered Algebras[J]. Journal of Functional Analysis, 1984, 59 : 41 - 64.
  • 8Huijsmans C B. The Order Bidual of Lattice Orderded Algebras Ⅱ[J].Journal of Operator Theory, 1989, 22. 277 - 290.
  • 9Bernau S J, Huijsmans C B. The Order Bidual of Almost f-algebra and d-algebra [J]. Transactions of the American Mathematical Society, 1995, 347:4259-4275.
  • 10Bernau S J, Huijsmans C B. Almost f-algebra and d-algebra [J]. Mathematical Proceedings of Cambrige Philosophical Socirty, 1990, 107:287-308.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部