期刊文献+

de Sitter空间中具有平行单位平均曲率向量的完备类空子流形 被引量:1

Complete Space-Like Submanifolds with a Parallel Normalized Mean Curvature Vector in a de Sitter Space
下载PDF
导出
摘要 考虑常截曲率为1的de Sitter空间Spn+p中,数量曲率n(n-1)R与平均曲率H满足一线性关系的一类完备类空子流形Mn.在平均曲率的适当假设条件下,证明了该类空子流形必然是全脐子流形或等距于双曲柱面. A complete space like submanifold M^n with the scalar curvature n(n-1)R and the mean curvature H being linearly related in a de Sitter space Sp^n+p is studied. Some sufficient conditions for a submanifold to be umbilic or to be isometric to a hyperbolic cylinder are obtained if the mean curvature satisfies certain conditions.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第10期83-87,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11261051)
关键词 类空子流形 平行单位平均曲率向量 全脐 双曲柱面 space-like submanifold parallel normalized mean curvature vector totally umbilical hyperbolic cylinder
  • 相关文献

参考文献8

  • 1AKUTAGAWA K. On Space-Like Hypersurfaces with Constant Mean Curvature in a de Sitter Space [J]. Math Z, 1987, 196(1): 13-19.
  • 2ZHENG Yong-fan. Space-Like Hypersurfaces with Constant Scalar Curvature in the de Sitter Spaces [J]. Differential Geom Appl, 1996, 6(1): 51-54.
  • 3CHENG Qing ruing. Complete Space-Like Submanifolds in a de Sitter Space with Parallel Mean Curvature Vector [J]. Math Z, 1991, 206(4): 333-339.
  • 4SHU Shi-chang. Curvature and Rigidity of Complete Spacelike Submanifolds in a de Sitter Space [J]. International Math Forum, 2010(4): 175-184.
  • 5CHAVES R M B, SOUSA J L A M. On Complete Space-Like Submanilolds in the de Sitter Space with Parallel Mean Curvature Vector [J]. Rev Un Mat Argentina, 2006, 47: 85-98.
  • 6SANTOS W. Submanifolds with Parallel Mean Curvature Vector in Spheres [J]. Tohoku Math J, 1994, 46: 403-415.
  • 7YAU S T. Submanifolds with Constant Mean Curvature [J]. Amer J Math, 1974, 96: 346-366.
  • 8ABE N, KOIKE N, YAMAGUCH S. Congruence Theorems for Proper Semi-Riemannin Hypersurfaces in a Real Space Form[J]. Yokohama Math J, 1987, 35:123-136.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部