摘要
考虑常截曲率为1的de Sitter空间Spn+p中,数量曲率n(n-1)R与平均曲率H满足一线性关系的一类完备类空子流形Mn.在平均曲率的适当假设条件下,证明了该类空子流形必然是全脐子流形或等距于双曲柱面.
A complete space like submanifold M^n with the scalar curvature n(n-1)R and the mean curvature H being linearly related in a de Sitter space Sp^n+p is studied. Some sufficient conditions for a submanifold to be umbilic or to be isometric to a hyperbolic cylinder are obtained if the mean curvature satisfies certain conditions.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第10期83-87,共5页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(11261051)
关键词
类空子流形
平行单位平均曲率向量
全脐
双曲柱面
space-like submanifold
parallel normalized mean curvature vector
totally umbilical
hyperbolic cylinder