期刊文献+

不同传代次数的酿酒酵母细胞壁蛋白组学分析 被引量:9

Proteomic analysis of cell wall proteins from Saccharomyces cerevisiae with different generation numbers
原文传递
导出
摘要 【目的】探讨酿酒酵母衰老过程中细胞壁蛋白变化,从蛋白水平上解释酿酒酵母衰老的原因。【方法】以酿酒酵母FFC2146为研究对象,采用显微镜观察法比较了经2、10、15次连续传代酿酒酵母的细胞形态;用计算细胞沉降速率的方法考查酵母凝絮性;通过3,5-二硝基水杨酸法测定降糖速率来表征酵母代谢活力;采用二硫苏糖醇溶解法结合苯酚萃取法抽提不同传代次数的酿酒酵母细胞壁蛋白;并且通过双向电泳进行差异性分析。【结果】结果显示随着传代次数的增加酿酒细胞个体表面变得粗糙,凝絮能力明显增强,降糖能力明显减弱,表明多次传代后的酵母体现出衰老现象。双向电泳结果共得到309个胞壁蛋白点,其中11个蛋白质点存在明显差异。6个蛋白质点在第15代丰度小于第2代丰度2倍以上,4个蛋白质点只在第15代酵母细胞壁中出现,1个蛋白质点只在第2代酵母细胞壁中出现。【结论】酿酒酵母FFC2146经过15次连续传代培养后11个细胞壁蛋白丰度发生明显变化,此11个细胞壁蛋白的表达水平与酿酒酵母衰老相关。 [Objective] To find out the mechanisms of yeast aging. [Methods] We performed continuous inoculation of Saccharomyces cerevisiae FFC2146 from generation to generation. We also observed the morphogenesis of Saccharomyces cerevisiae which has different generation numbers (2, 10, 15) through microscope, and measured absorbance in 600 nm to signify flocculation after sedimentation and determined residual glucose by DNS. Proteomic analysis of yeast cell wall proteins from the 2th and 15th generation was observed by Two-dimensional electrophoresis. [Results] Results showed that, the 15th generation yeast has rougher cell surface, higher flocculating velocity and lower metabolic level than the 2th and 10th generation, indicated that continuous inoculation accelerates yeast recession. Proteins were obtained by dithiothreitol and phenol abstraction. 309 proteins were detected and presented 11 changes responded to cell recession, 6 spots reduced by more than 2-fold in the 15th gel, 4 spots appeared in the 15th gel only and 1 spot appeared in the 2th only. [Conclusion] 11 Proteins from Saccharomyces cerevisiae cell wall changed after continuous inoculation 14 times, the changes of expression levels among these proteins were connected to yeast aging.
出处 《微生物学通报》 CAS CSCD 北大核心 2013年第11期1962-1969,共8页 Microbiology China
关键词 酿酒酵母 酵母衰老 传代次数 细胞壁蛋白 双向电泳 Saccharomyces cerevisiae, Yeast aging, Generation times, Cell wall proteins,Two-dimensional electrophoresis
  • 相关文献

参考文献11

  • 1Frans MK,Andre B,Piet WJ,et al.Cell wallconstruction in Saccharomyces cerevisiae.Yeast,2006,23(3):185-202.
  • 2Smits GJ,Kapteyn JC,van den Ende H,et al.Cellwall dynamics in yeast[J].Microbiology,1999,2(4):348-352.
  • 3Bony M,Thines-Sempoux D,Barre P,et al.Localization and cell surface anchoring of theSaccharomyces cerevisiae flocculation protein Flolp[J].Journal of Bacteriology,1997,179(15):4929-4936.
  • 4Ketela T,Green R,Bussey H.Saccharomycescerevisiae mid2p is a potential cell wall stresssensor and upstream activator of the PKCI-MPKlcell integrity pathway[J].Journal of Bacteriology,1999,181(11):3330-3340.
  • 5Shimoi H,Kitagaki H,Ohmori H,et al.Sedlp is amajor cell wall protein of Saccharomyces cerevisiaein the stationary phase and is involved in lyticenzyme resistance[J].Journal of Bacteriology,1998,180(13):3381-3387.
  • 6Manuel J,Victor JC,Javier A,et al.A novel familyof cell wall-related proteins regulated differentlyduring the yeast life cycle[J].Molecular andCellular Biology,2000,20(9):3245-3255.
  • 7翟明昌,朴永哲,王祥余,夏先锋,沈海萍,赵爽,赵长新.混菌发酵中不同分子量代谢产物对非酿酒酵母胞内蛋白及酒体有机酸的影响[J].微生物学通报,2011,38(9):1443-1448. 被引量:6
  • 8Insenser MR,Hernaez ML,Nombela C,et al.Geland gel-free proteomics to identify Saccharomycescerevisiae cell surface proteins[J].Journal ofProteomics,2010,73(6):1183-1195.
  • 9程君生,毛开荣,丁家波,蒋玉文.微量Bradford法测定提纯禽结核菌素蛋白含量[J].中国兽药杂志,2007,41(6):9-11. 被引量:11
  • 10Pasikowska M,Palamarczyk G,Lehle L.Theessential endoplasmic reticulum chaperone Rotl isrequired for protein N-and O-glycosylation inyeast[J].Glycobiology,2012,22(7); 939-947.

二级参考文献29

  • 1湛垚垚,龙潜,卢小霞,杨楠,周艳,辛毅.乙胺丁醇处理前后耻垢分枝杆菌mc^2155细胞蛋白双向电泳图谱的差异分析[J].大连医科大学学报,2007,29(1):1-3. 被引量:4
  • 2Ciani M, Picciotti G. The growth kinetics and fermenta- tion behaviour of some non-Saccharomyces yeasts associ- ated with wine-making[J]. Biothechnology Letters, 1995, 17(11): 1247-1250.
  • 3Viegas CA, Rosa MF, Sa-Correia 1, et al. Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation[J]. Appl Environ Microbiol, 1989, 55(1): 21-28.
  • 4Edwards CG, Beelman RB, Bartley CE, et al. Production of decanoic acid and other volatile compounds and the growth of yeast and malolactic bacteria during vinification[J]. Am J Enol Vitie, 1990, 41(1): 48-56.
  • 5Bisson LF. Stuck and sluggish fermentations[J]. Am J Enol Viticult, 1999, 50(1): 107-119.
  • 6Fleet GH. Yeast interactions and wine flavour[J],Int J Food Microbiol, 2003, 86(1/2): 11-22.
  • 7Woods DR, Bevan EA. Studies on the nature of the killer factor produced by Saccharomyces cerevisiae[J]. J Gen Microbiol, 1968, 51(1): 115-126.
  • 8Schmitt M J, Breinig F. The viral killer system in yeast:from molecular biology to application[J]. FEMS Micro- biol Rev, 2002, 26(3): 257-276.
  • 9Albergaria H, Francisco D, Gori K, et al. Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains[J]. Appl Microbiol Biotechnol, 2010, 86(3): 965-972.
  • 10Nissen P, Arnebrog N. Characterization of early deaths of non-saccharomyces yeasts in mixed cultures with Sac- charomyces cerevisiae[J]. Arch Microbiol, 2003, 180(4): 257-263.

共引文献19

同被引文献133

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部