期刊文献+

基于原始-对偶内点法寻优的地震数据稀疏反演方法

Primal-Dual method for optimization of sparse constraint seismic data inversion
下载PDF
导出
摘要 针对波阻抗反演中反射系数的稀疏优化问题,本文提出了基于原始-对偶内点法[1]的最优化方法.将反射系数的反演问题描述为等价的不等式约束最优化问题,利用原始-对偶内点法实现最优求解.内点法分为内外两层循环,外循环使用逐步逼近(Sequential Unconstrained Minimization Technique,SUMT)的最优化方法,以对偶间隙(Duality Gap)作为停机准则,内循环为牛顿法解无约束最小化问题,利用预条件化后与LSQR分解方法提高了计算效率,经理论数据与实际资料验证,表明本文方法的有效性. To improve the resolution and speed up the computing, a new method of deconvolution is proposed, which based on the Primal-Dual method for convex optimization. The object function minimizes the 11 norm of the reflectivities while trying to keep the convolution of them the same as the original data with some bias. With the Primal-Dual method, the minimization can be solved as an unconstrained minimization, which is part of the convex optimization. Two parts constitute the solving, one is the outer iterations, called Sequential Unconstrained Minimization Technique(SUMT), stopping criterion of which is the Duality Gap; the other is the inner iterations looking for minimization under certain Duality Gap using Newton Method. Linear Equations need to be solved in the solving, and pre-conditioned LSQR is applied to so memory, CPU time can be saved, and high accuracy, quick convergence can be reached.
出处 《地球物理学进展》 CSCD 北大核心 2013年第5期2524-2535,共12页 Progress in Geophysics
关键词 波阻抗反演 稀疏反演 内点法 预条件化 LSQR impedance inversion, sparse inversion, interior-point method, pre-conditioning, LSQR
  • 相关文献

参考文献12

  • 1Michael A. Suanders PIXY: Primal-Dual method for optimization with convex objectives-Notes for deriving the equations[Z]. 2002.
  • 2曹静杰,王彦飞,杨长春.地震数据压缩重构的正则化与零范数稀疏最优化方法[J].地球物理学报,2012,55(2):596-607. 被引量:40
  • 3王彦飞,I.E.斯捷潘诺娃,V.N.提塔连科,AG.亚格拉,地球物理数值反演问题(InverseProblemsinGeophysicsandSolutionMethods)[M],高等教育出版社[全球变化与地球系统科学系列丛书],2011年6月.
  • 4Yanfei Wang, S F Fan and X Feng, Retrieval of the aerosol particle size distribution function by incorporating a priori information[J], Journal of Aerosol Science, 2007, 38(8), 885-901.
  • 5Sun W, Yuan Y X. Optimization theory and methods: nonlinear programng[M]. Springer, 2006.
  • 6Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005c, 51 (12) : 4203-4215.
  • 7Chen S, Donoho D L, Saunders M. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientifc Computation, 1998, 20(1): 33-61.
  • 8Donoho D L, Tsaig Y. Fast solution of ll-norm minimization problems when the solution may be sparse [R]. Stanford: Stanford University. 2006.
  • 9Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inversed problems [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 10Michael A. Suanders, Christopher G Paig LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares[J]. 1982a.ACMTrans. Math. Softw. 8,2(June 1982).

二级参考文献1

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部