期刊文献+

基于K-SVD字典学习的合成图像盲检测 被引量:4

Blind Detection of Composite Images Based on K-SVD Dictionary Learning
原文传递
导出
摘要 一幅真实的图像中噪声特性是一致的,而由多幅图像内容拼接而成的合成图像噪声特性是不一致的.本文利用这一特点,提出了一种基于K均值奇异值分解(K-SVD)字典学习的合成图像盲检测方法.该方法首先通过K-SVD算法对合成图像进行训练得到其稀疏表示字典,然后利用学习得到的字典对背景噪声进行去除,最后根据去噪前后图像对应子块的相关系数异同实现篡改区域的检测与定位.实验结果表明,该方法对于鉴别含有不同背景噪声的合成图像具有显著效果,同时,算法对JPEG压缩、重采样和模糊等后处理操作都具有较好的鲁棒性. Digital images which have an inherent amount of noise typically uniform across the entire image is introduced by imaging process,if images with different noise levels are spliced together would leave an evidence of tampering.Base on this characteristic,in this paper we proposes a blind detection method using K-means singular valne deconposition(K-SVD)dictionary learning.A dictionary about sparse representation is obtained by training samples form composite image with K-SVD dictionary learning algorithm.Then the composite image is denoised by utilizing learned dictionary.By estimating the correlation coefficients of image blocks before and after denoise,the fogery regions can be found.Simulation results show its effectiveness in detecting forgery part in spliced images with different noise levels.The proposed method has good robustness against lossy JPEG compression,resampling and blurring.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2013年第5期499-504,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(U1204606) 江苏省高校自然科学基金(12KJB510026 12KJB510025) 南通大学博士科研启动基金(03080416 03080415)资助项目
关键词 被动取证 图像合成 背景噪声 K-SVD 字典学习 passive image forensics image composition background noise K-means singular value deconposition(K-SVD) dictionary learning
  • 相关文献

参考文献14

  • 1Popescu A C, Farid H. Exposing digital forgeries in color filter array interpolated images[J]. IEEE Trans- actions Signal Processing, 2005, 53(10) : 3948-3959.
  • 2Farid H. Exposing digital forgeries from JPEG ghosts[J]. IEEE Transactions on Information Forensics and Se- curity, 2009, 1(4): 154-160.
  • 3王伟,方勇.基于有限差分的置换图像盲检测方法[J].电子学报,2010,38(10):2268-2272. 被引量:10
  • 4Hsu Y F, Chang S F. Camera response functions for image forensics: An automatic algorithm for splicing detection[J]. IEEE Transactions on Information Fo- rensics and Security, 2010, 5(4) :816-825.
  • 5Liu Q, Cao X, Deng C, etal. Identifying image com- posites through shadow matte consistency[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1111-1122.
  • 6周琳娜,王东明,郭云彪,杨义先.基于数字图像边缘特性的形态学滤波取证技术[J].电子学报,2008,36(6):1047-1051. 被引量:45
  • 7王伟,方勇.基于二次模糊相关性的单通道置换图像盲分离[J].应用科学学报,2011,29(2):169-175. 被引量:12
  • 8Chen M, Fridrich J, Goljan M, et al. Determining im-age origin and integrity using sensor noise[J]. IEEE Transactions on Information Security and Forensics, 2008, 3(1) 174-90.
  • 9Gou H, Swaminathan A, Wu M. Intrinsic sensor noise features for forensic analysis on scanners and scanned images[J]. IEEE Transactions on Informa- tion Forensics and Security,2009,4(3) :476-491.
  • 10张晖,张荣,尹东.使用背景噪声盲估计的图像真伪鉴别[J].中国图象图形学报,2010,15(12):1738-1741. 被引量:7

二级参考文献53

  • 1张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报,2004,32(7):1156-1159. 被引量:7
  • 2王波,孙璐璐,孔祥维,尤新刚.图像伪造中模糊操作的异常色调率取证技术[J].电子学报,2006,34(B12):2451-2454. 被引量:39
  • 3Hsiao D Y,Pei S C.Detection digital tampering by blur estimation .In Proc.IEEE SADFE'05 .Taipei,Taiwan,2005.264-278.
  • 4Sutcu Y,Coskun B,Sencar H T,et al.Tamper detection based on regularity of wavelet transform coefficients .In Proc.IEEE ICIP’07 .San Antonio,USA,2007.397-400.
  • 5Farid H.Blind inverse gamma correction[J].IEEE Transactions on Image Processing,2001,10(10):1428-1433.
  • 6Popescu A C,Farid H.Exposing digital forgeries in color filter array interpolated images[J].IEEE Transactions on Signal Processing,2005,53(10):3948-3959.
  • 7Lukás J,Fridrich J,Goljan M.Digital camera identification from sensor pattern noise[J].IEEE Transactions on Information Forensics and Security,2006,1(2):205-214.
  • 8Chen M,Fridrich J,Goljan M,et al.Determining image origin and integrity using sensor noise[J].IEEE Transactions on Information Forensics and Security,2008,3(1):74-89.
  • 9Johnson M K,Farid H.Exposing digital forgeries by detecting inconsistencies in lighting .In Proc.ACM Multimedia and Security Workshop’05 .New York,USA,2005.1-10.
  • 10Johnson M K,Farid H.Exposing digital forgeries in complex lighting environments[J].IEEE Transactions on Information Forensics and Security,2007,2(3):450-461.

共引文献67

同被引文献25

  • 1李哲,郑江滨.基于噪声分布规律的伪造图像盲检测算法[J].计算机应用研究,2009,26(3):1092-1094. 被引量:10
  • 2李旭超,朱善安.基于小波模极大值和Neyman-Pearson准则阈值的图像去噪[J].中国图象图形学报,2005,10(8):964-969. 被引量:11
  • 3尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报,2006,35(6):876-878. 被引量:25
  • 4Michael Elad, Michal Aharon. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries{C]. IEEE Transactions on Image Processing, 2006,15 (12):3736-3745.
  • 5Yin Kuang, Lei Zhang, Zhang Yi. An adaptive rank-sparsity K-SVD algorithm for image sequence denoising[J].Pattern Recognition Letters, 2014, 45:46-54.
  • 6Farid H. Image forgery detection [J] IEEE Signal Processing Magazine, 2009, 26(2) : 16 -25.
  • 7Gou H, Swaminathan A. Intrinsic sensor noise features for forensic analysis on scanners and scanned images [ J ]. IEEE Transactions on Information on Forensics and Security, 2009, 4 (3): 476 - 491.
  • 8Luk~ J, Fridrich J, Goljan M. Detecting digital image forgeries u- sing sensor pattern noise [ C] //Security, Steganography, and Watermarking of Multimedia Contents VII. Bellinghmn, WA: SPIE, 2006 : 60 - 72.
  • 9Popescu AC, Farid H. Statistical tools for digital forensics[ C]// Information Hiding,Springer Berlin Heidelberg,2005 : 128 - 147.
  • 10蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350. 被引量:48

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部