期刊文献+

多线性位势型算子的一类加权不等式

Some weighted inequalities for multi-linear potential type operators
下载PDF
导出
摘要 设Φ是Rn上满足弱增长条件的非负局部可积函数,A是Rn上所有一阶偏导数都属于BMO(Rn)的函数.本文讨论由Φ与A生成的一类多线性位势型算子TAΦ与其极大函数相联系的关于任意权的加权不等式。 In definition,let Φ be a non-negative locally integral function on Rn and satisfy weak growth condition,and Abe a function on Rn with derivatives of order one in BMO(Rn).Considering the multi-linear potential type integral operator TAΦ generated by Φ and A,this paper discusses the weighted inequalities of arbitrary weight for TAΦ associated with its maximal function.
出处 《河北科技大学学报》 CAS 2013年第5期403-405,416,共4页 Journal of Hebei University of Science and Technology
基金 河北省自然科学基金(08M001)
关键词 多线性位势型算子 加权不等式 极大函数 multi-linear potential type operator weighted inequality maximal function
  • 相关文献

参考文献10

  • 1PEREZ C. Two weighted inequalities for potential and fractional type maximal operrtors[J]. Indiana Univ Math J, 1994, 43: 663-683.
  • 2LI Wenming. Two weight norm inequalitioes for multilinear potential type integral operators[J]. Math Nachr,2008, 281: 839-846.
  • 3BENNETT C,SHARPPI.ET R. Interpolation of Operators[M]. Boston= Academic Press,1988.
  • 4CRUZ URIBEI), NEUGEBAUERC J. The styuctureof the reverse classess[J]. Trans Amer Math Soc,1995, 347:2 941-2 960.
  • 5CARRO M J, PIREZ C,SORIA F,et al. Maximal funtions and the control of weighted inequalities for the fractional integral operators [J]. lndiana Univ Math J,2005, 54= 627-644.
  • 6PEREZ C,WHEEDEN R. Potential operators,maximal functions, and generalizations of A. [J]. Potential Anal, 2003, 19 : 1-33.
  • 7FEFFERMAN C,STEIN E M. Some maximal inequalities[J]. Amer J Math, 1971, 93: 107-1 15.
  • 8MOEN K. Weighted inequalities for multilinear fractional integral operators[J]. Collect Math, 2009, 60(2) 213-216.
  • 9LI Wenming. Two weight norm inequalitioes for commutators of potential type integral[J]. Math J Anal,2006, 322:1 215 1 223.
  • 10YAN Xuefang, XUE Limei, LI Wenming. Weighted endpoint estimates for commutators of multilinear fractional integral operators[J] Czech Math J, 2012, 62: 347-359.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部