期刊文献+

基于RS_RBF的电信企业客户流失预测 被引量:1

Loss of Customers Forecast of Telecom Enterprise Based on RS_RBF
下载PDF
导出
摘要 针对电信企业客户流失的不规律性,提出以粗糙集(RS)_RBF神经网络作为电信企业客户流失的预测模型.首先利用粗糙集理论对客户属性约简,简化了网络结构.其次提出以约简后的决策表的规则支持度作为径向基函数的响应宽度基准,此种赋值方法相比传统方法更具合理性和科学性.最后利用正交最小二乘法(OLS)求得对网络输出贡献度较大的条件属性集和网络权值.把本模型与其它RBF预测模型应用于电信企业客户流失预测并且进行效果比较,实验结果证明了本模型的有效性和高效性. To the irregularity loss of customers of telecom enterprise,A rough set(RS)_RBF neural network as the loss of customers of telecom enterprise forecast model is proposed.First,It reduce the customer attributes by rough set theory,simplify the network structure.Second,proposed rule support degree after the reduction of decision table as baseline of response width of radial basis function,this assignment method is more reasonable and scientific than traditional methods.Finally,obtain the condition attribute set that with a large output contribution to the network by the orthogonal least squares(OLS).By using this model and other RBF forecast model to the loss of customers forecast of telecom enterprise,compare the effects,This experimental show this model is more effective and efficiency.
出处 《首都师范大学学报(自然科学版)》 2013年第5期43-47,共5页 Journal of Capital Normal University:Natural Science Edition
关键词 粗糙集 RBF神经网络 电信企业 客户流失 rough set RBF neural network telecom enterprise loss of customers.
  • 相关文献

参考文献7

二级参考文献19

  • 1Mozer M C,Predicting Subseriber Dissatisfation and Improving Retention in the Wireless Telecommunications Industry[J].IEEE Trans on Neural Networks, 2000; 11 (3)690~696.
  • 2Lian Yan.Predicting customer behavior in telecommunications[J].Intelligent Systems,IEEE,2004; 19(2) :50~58.
  • 3David Heckerman. A Turorial on Learning with Bayesian Networks.heckman@Microsoft.com, 1995-03.
  • 4.[EB/OL].www.ai.nit.edu/murphyk/Software/BNT/bnt.html,.
  • 5Cooper G,Herskovits E.A Bayesian method for the induction of probabilistic networks from data[J].Machine Learning, 1992 ;9:309~347.
  • 6XU X, FRANK E. Logistic regression and boosting for labeled bags of instances [J]. Lecture Notes in Computer Science, 2004, 3 056:272-281.
  • 7CASELLA G, BERGER R. Statistical Inference [M]. Thomsoan Learning. 2002.
  • 8HOFMANN T. Introduction to Machine Learning [M]. Draft Version 1.1.5, 2003.
  • 9HASTIE T, TIBSHIRANI R. Generalized Additive Models [M]. Encyclopedia of Statistical Sciences, 1996
  • 10FRIEDMAN F, HASTIE T, TIBSHIRANI R. Additive Logistic Regression: a Statistical View of Boosting [M]. 1998.

共引文献69

同被引文献8

  • 1Hung Shinyuan,Yen David C,Wang Hsiuyu.Applying data mining to telecom churn management[J].Expert Systems with Applications,2006,31(1):515-524.
  • 2Au W,Chen K C C,Yao X.A novel evolutionary data mining algorithm with applications to churn prediction[J].Evolutionary Computation,IEEE Transactions,2003,7(6):532-545.
  • 3Mozer M C,Wolniewicz R,Grimes D B,et al.Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry[J].Neural Networks,IEEE Transactions,2000,11(3):690-696.
  • 4Yan L,Miller D J,Mozer M C,et al.Improving prediction of customer behavior innonstationary environments[C]//Anon.Proceedings of the International Joint Conference on Neural Networks,Portland OR,2003(3):2258-2263.
  • 5Rosset S.Neumann E Integrating customer value considerations into predictive modeling[C]//Wu Xindong,Tuzhilin Alexander,Shavlik Jude W Proceedings of the Third IEEE International Conference on Data Mining(ICDM 03),America Florida,2004.
  • 6Modisette,Lisa.Milking wireless churn for profit[J].Telecommunications International Edition,1999,33(2):73-76.
  • 7邓全.决策树算法与客户流失分析[J].西安邮电学院学报,2013,18(3):49-51. 被引量:6
  • 8李洋.基于神经元网络的客户流失数据挖掘预测模型[J].计算机应用,2013,33(A01):48-51. 被引量:8

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部