期刊文献+

边染色临界图主顶点数的一个结果

A RESULT ON THE NUMBER OF MAJOR VERTEX OF CRITICAL GRAPHS
下载PDF
导出
摘要 如果一个连通的第二类图G去掉任意一条边后其边色数都比图G小,则称它是一个临界图.最大顶点度为△的临界图称作△-临界图.1968年,Vizing猜想任意n阶△-临界图G边数m的下界为(nΔ-n+3)/2.Fiorini不等式和差值转移法被广泛用于研究此猜想.笔者利用Vizing邻接引理和临界图的结构性质给出了Δ-临界图在△≥6且(Δ-1)度顶点至多邻接一个四度顶点时Fiorini不等式的一个新的下界. Let G be a connected graph that is also class two,for any edge e of G,if the edge chromatic number of G/e is strictly less than G,then G is a critical graph.We call a graph is Δ-critical if it is a critical graph with maximum degree Δ.In 1968,Vizing conjectured that the size of a Δ-critical graph of order n is no less than(nΔ-n + 3)/2.Fiorini inequality and discharging method are widely used to prove the above conjecture.By using Vizing Adjacency Lemma and some properties of critical graph,we give a new lower bound to Fiorini inequality for Δ-critical graph when Δ≥6 and every(Δ-1)-vertex in G is adjacent at most one 4-vertex.
出处 《山东师范大学学报(自然科学版)》 CAS 2013年第4期7-9,共3页 Journal of Shandong Normal University(Natural Science)
关键词 临界图 边染色 第一类图 第二类图 critical graph edge coloring graph of class one graph of class two
  • 相关文献

参考文献10

  • 1Vizing V G.Critical graphs with a given chromatic index[J].Diskret Analiz,1965,5:9-17.
  • 2Vizing V G.Some unsolved problems in graph theory[J].Uspekhi Mat Nauk,1968,23 (6):117-134.
  • 3Fiorini S,Wilson R J.Edge Colorings of Graphs[M].San Francisco:Pitman,1977.
  • 4Zhang Limin,Shi Wenjun,Huang Xianzhen,et al.New results on chromatic index critical graphs[J].Discrete Math,2008,300:1-5.
  • 5Bokal D,Brinkmann G,Grunewald S.Chromatic-index-critical graphs of orders 13 and 14[J].Discrete Math,2005,300:16-29.
  • 6Li Shuchao,Li Xuechao.Edge coloring of graphs with small maximum degrees[J].Discrete Math,2009,309:4843-4852.
  • 7Miao Lianying,Pang Shiyou.On the size of edge-coloring critical graphs with maximum degree 4[J].Discrete Math,2008,308:5856-5859.
  • 8Douglas R Woodall.The average degree of an edge-chromatic critical graph[J].Discrete math,2008,308:803-819.
  • 9Zhang L.Every planar graph with maximum degree 7 is of class 1[J].Graphs Combin,2000,16:467-495.
  • 10Bondy J A,Murty U S R.Graph Theory with Application[M].London:Macmillan Press,1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部