摘要
如果一个连通的第二类图G去掉任意一条边后其边色数都比图G小,则称它是一个临界图.最大顶点度为△的临界图称作△-临界图.1968年,Vizing猜想任意n阶△-临界图G边数m的下界为(nΔ-n+3)/2.Fiorini不等式和差值转移法被广泛用于研究此猜想.笔者利用Vizing邻接引理和临界图的结构性质给出了Δ-临界图在△≥6且(Δ-1)度顶点至多邻接一个四度顶点时Fiorini不等式的一个新的下界.
Let G be a connected graph that is also class two,for any edge e of G,if the edge chromatic number of G/e is strictly less than G,then G is a critical graph.We call a graph is Δ-critical if it is a critical graph with maximum degree Δ.In 1968,Vizing conjectured that the size of a Δ-critical graph of order n is no less than(nΔ-n + 3)/2.Fiorini inequality and discharging method are widely used to prove the above conjecture.By using Vizing Adjacency Lemma and some properties of critical graph,we give a new lower bound to Fiorini inequality for Δ-critical graph when Δ≥6 and every(Δ-1)-vertex in G is adjacent at most one 4-vertex.
出处
《山东师范大学学报(自然科学版)》
CAS
2013年第4期7-9,共3页
Journal of Shandong Normal University(Natural Science)
关键词
临界图
边染色
第一类图
第二类图
critical graph
edge coloring
graph of class one
graph of class two