摘要
本文研究Bergman空间L_a^p(B_n)(p>1)上Hankel算子和Toeplitz算子的紧性,证明了符号属于L~∞(B_n)的Hankel算子,Toeplitz算子的紧性与Borg-man空间L_a^p(B_n)(p>1)无关。
In this paper a study is given to the compactivity of the Hankel operators andToeplitz operators on the Bergman space L_a^p(B_n)(p>1). It is shown that the compa-ctness of the Hankel operators and Toeplitz operators with symbols belonging toL~∞(B_n) does not depend on the Bergman space L_a^p(B_n)(p>1).
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
1991年第2期151-157,共7页
Journal of Fudan University:Natural Science