期刊文献+

带非线性边界的p-Laplacian问题的多重解 被引量:1

Multiplicity Solutions for p-Laplacian Problems with Nonlinear Boundary Conditions
下载PDF
导出
摘要 研究了外域空间上一类带非线性边界的p-Laplacian问题多重解的存在性.利用极值原理和山路引理,证明了带非线性边界的p-Laplacian问题至少存在2个非平凡解. The existence of multiple solutions for a class of p-Laplacian problems with nonlinear boundary conditions on exterior domain was investigated.Using extremum principle and mountain pass lemma,the existence of at least two nontrivial solutions for p-Laplacian equations with nonlinear boundary conditions was proved.
出处 《上海理工大学学报》 CAS 北大核心 2013年第5期449-451,共3页 Journal of University of Shanghai For Science and Technology
基金 上海市自然科学基金资助项目(11ZR1424500) 上海市一流学科建设资助项目(XTKX2012)
关键词 多重解 非线性边界 山路引理 multiplicity solutions nonlinear boundary conditions Mountain Pass Lemma
  • 相关文献

参考文献8

  • 1Rossi J D. Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem [M]. New York: Elsevier, 2005.
  • 2Druet O, Hebey E. Elliptic equations of Yamabe type I-J]. International Mathematics Research Surveys, 2005,1(1) ..1 - 113.
  • 3Yu L S. Nonlinear p-Laplacian problems on unbounded domains[J]. Proc American Mathematical Soc, 1992, 115(4) : 1037- 1045.
  • 4MomtefuscoE, Radulescu V. Nonlinear eigenvalue problems for quasilinear operators on unbounded domains[J]. Nonlinear Differ Equ Appl, 2001,8 (2): 481 - 497.
  • 5Filippucci R, Pucci P, Radulescu V. Existence and non- existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions [J ]. Comm Partial Differ Eqations, 2008,33(3) .. 706 - 717.
  • 6Pfluger K. Compact traces in weighted Sobolve spaces [J]. Analysis, 1998,18 (1) : 65 - 83.
  • 7Pfluger K. Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary conditions E J ]. Electronic Journal of Differential Equations, 1998(10) .. 1 - 13.
  • 8Diaz J I. Nonlinear partial differential equations and free boundaries[M]//Research Notes in Mathematics. Boston.- Prentice ltall, 1986.

同被引文献12

  • 1Aouaoui S. Mnltiplicity of solutions for quasilinear elliptic equations in R N [j]. Journal of Mathematical Analysis and Applications, 2010,370 ( 2 ) : 639 - 648.
  • 2Gazzola F. Positive solutions of critical quasilinear elliptic problems in general domains [j]. Abstract and Applied Amlysis, 1998,3(1/2) :65 - 84.
  • 3Salvatore A. Some multiplicity results for a superlinear elliptic problem in R N[j]. Topological Methods in Nonlinear Analysis,2003,21 :29 - 39.
  • 4Garofalo N,I_anconelli E. Existence and nonexistence results for semilinear equations on the Heisenberg group [J]. Indiana University Mathematical Journal, 1992, 41 ( 1 ): 71-98.
  • 5Niu P C. Nonexistence for semilinear equations and systerm in the Heisenberg group [J ]. Journal of Mathematical Analysis and Applications,1999,2_AO(1):47-59.
  • 6SquassinaM. Existence of multiple solutions for quasilinear diagonal elliptic systems [J]. Electronic Journal of Differential Equations, 1999(14):1-12.
  • 7Brezis H, Browder F E. Sur une propriata des espaces de Sobolev [J ]. Comptes Rendus Mathfimatique Acadfimie des Sciences Paris A-B, 1978, 287 ( 1 ) 113-115.
  • 8Canino A. Multiplicity of solutions for quasilinear elliptic equations [ J ]. Topological Methods in Nonlinear Analysis, 1995,6 (2) : 357-370.
  • 9Douik H. Variational methods in nonsmooth analysis and quasilinear equations[D]. Germany, North Rhine Westphalia: Aachen University, 2003.
  • 10Ladyaenskaya 0 A, Uralceva N N. Linear and quasilinear elliptic equations[M]. New York:Academic Press, 1968.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部