摘要
传统的基于身份环签名方案大多采用双线性配对实现,但配对方法的运算复杂度较高,会大幅降低签名方案的效率。为此,提出一种非配对的环签名方案。给出用于有效计算三次剩余3l次根的算法,在该算法的基础上生成签名密钥,并结合三次剩余理论构造基于身份的环签名方案。分析结果表明,在大整数分解困难问题的假设前提下,该方案在随机预言模型下被证明是选择消息和身份安全的。同时,该方案也满足签名者无条件匿名性。
Most identity-based schemes are based on the bilinear pairing, which has a high computational complexity and seriously reduces the efficiency of the cryptograpbic schemes. Aiming at this problem, this paper proposes a ring signature scheme without paring. By introducing a new technique of how to calculate the 31th root of a cubic residue in Eisenstein ring, which is applied to calculate ring signature keys as well, a new identity-based ring signature scheme is proposed based on cubic residues. This scheme is formally proved that it is chosen message and identity secure in the random oracle model, assuming the hardness of factoring. The proposed scheme is also been proved to meet the signer unconditional anonymity.
出处
《计算机工程》
CAS
CSCD
2013年第12期111-117,共7页
Computer Engineering
基金
国家自然科学基金资助项目(60972034)
关键词
基于身份签名
环签名
三次剩余
大整数分解
随机预言模型
可证安全
Identity-based Signature(IBS)
ring signature
cubic residues
integer factorization
random oracle model
proven security