期刊文献+

基于聚类的NSGA-Ⅱ算法 被引量:2

Non-dominated Sorting Genetic Algorithm Ⅱ Based on Clustering
下载PDF
导出
摘要 采用精英策略的非支配排序遗传算法(NSGA-II)种群收敛分布不均匀,全局搜索能力较弱。针对该问题,基于现有的算法,提出一种基于聚类学习机制的多目标进化算法KMCNSGA-II。利用K均值聚类对目标函数和个体分别进行聚类,对聚类后的个体进行局部学习,以提高适应度。将该算法应用于经典的多目标约束和非约束测试函数中,通过收敛性指标世代距离和多样性指标?进行性能评价。实验结果表明,与NSGA-II算法相比,该算法在算法收敛性和种群多样性保持方面均有明显提高。 According to the uneven distribution of population convergence and poor performance in global search of Non-dominated Sorting Genetic Algorithm II(NSGA-II), a multi-objective evolutionary algorithm, called K-means clustering non-dominated sorting genetic algorithm II(KMCNSGAII) is proposed with combining the theory and the existing algorithm. The KMCNSGAII uses K-means clustering technology and at the same time clusters both all the objective functions and individuals respectively. Then the learning and improvement method is used with respect to individuals after clustering. The KMCNSGAII algorithm is applied to several classical unconstrained and constrained test functions. Experimental results demonstrate that the KMCNSGAII achieves good results with performance evaluation about convergence indicator and diversity indicator, in convergence and diversity of population both are improved significantly compared with NSGA-II.
出处 《计算机工程》 CAS CSCD 2013年第12期186-190,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61165002) 甘肃省自然科学基金资助项目(1010RJZA019)
关键词 多目标进化算法 多目标优化 K均值聚类 非支配排序遗传算法II 局部搜索 PARETO前沿 Multi-objective Evolutionary Algorithm(MOEA) multi-objective optimization K-means clustering Non-dominated Sorting
  • 相关文献

参考文献11

  • 1Scaffer J D.Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithm.Pittsburgh,USA:[s.n.],1985.
  • 2Deb K,Pratap A,Agarwal S,et al.A Fast Elitist Multi-objective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 3Srinivas N,Deb K.Multiobjective Function Optimization Using Nondominated Sorting Genetic Algorithm[J].Evolu-tionary Computation,1995,2(3):221-248.
  • 4Hartigan J A,Wong M A.A K-Means Clustering Algorithm[J].Applied Statistics,1979,28(1):100-108.
  • 5Battiti R,Mauro B,Franco M.Reactive Search and Intelligent Optimization[R].Universita di Trento:Technical Report:DIT-07-049,2008.
  • 6MacQueen J B.Some Methods for Classification and Analysis of Multivariate Observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley,USA:University of California Press,1967.
  • 7van Veldhuizen D A,Lamont G B.Multiobjective Evolu-tionary Algorithm Research:A History and Analysis[R].Universit a di Pisa:Technical Report:TR-98-03,1998.
  • 8Chuang Yaochen,Chen Chyi-Tsong.A Study on Real-coded Genetic Algorithm for Process Optimization Using Ranking Selection,Direction-based Crossover and Dynamic Muta-tion[C]//Proc.of IEEE Congress on Evolution Computation.[S.l.]:IEEE Press,2011.
  • 9Sivaraj R,Ravichandran T.A Review of Selection Methods in Genetic Alorithm[J].International Journal of Engineering Science and Technology,2011,3(5):3792-3797.
  • 10Prasad K V R B,Singru P M.Performance of Lognormal Probability Distribution in Crossover Operator of NSGA-II Algorithm[C]//Proceedings of the 8th International Con-ference on Simulated Evolution and Learning.Kanpur,India:[s.n.],2010.

同被引文献20

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2唐秋华,席忠民,陈平和,严运兵.高效精准混装作业调度策略研究[J].中国机械工程,2007,18(9):1108-1111. 被引量:6
  • 3Deb K,Pratap A,Agarwal S,et al. A Fast and Elit ist Multi- objective Genetic Algorithm: NSGA- II [J]. IEEE Transactions on Evolutionary Computa tion, 2002,6 (2) : 182-197.
  • 4Tang Qiuhua, Li Jie, Floudas C A, et al. Optimiza- tion Framework for Process Scheduling of Opera- tion-dependent Automobile Assembly Lines[J].Op timization Letters, 2012,6 (4) : 797-824.
  • 5Hyun Chulju, Kim Yeongho, Kim Yeokeun. A Ge- netic Algorithm for Multiple Objective Sequencing Problems in Mixed Model Assembly Lines [J]. Computers & Operations Research, 1998, 25(7/8) :67.
  • 6Chutima P, Naruemitwong W. A Pareto Biogeogra- phy-based Optimisation for Multi-objective Two- sided Assembly Line Sequencing Problems with a Learning Effect[J]. Computers & Industrial Engi- neering, 2014,69 : 89-104.
  • 7Ruiz R, Maroto C, Alcaraz J. Two New Robust Ge- netic Algorithms for the Flowshop Scheduling Problem[J]. Omega, 2006,34(5) :461-476.
  • 8Coello Coello C A,Pulido G T,Lechuga M S. Han- dling Multiple Objectives with Particle Swarm Op- timization[J]. IEEE Trans. on Evolutionary Coin-putation,2004,8(3) :256-27.
  • 9杨俊杰,周建中,方仍存,李英海,刘力.基于自适应网格的多目标粒子群优化算法[J].系统仿真学报,2008,20(21):5843-5847. 被引量:28
  • 10鲍培明,朱庆保.用于多目标进化的归一化排序非支配集构造方法[J].电子学报,2009,37(9):2010-2015. 被引量:9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部