期刊文献+

基于SLPP与MKSVM的痛苦表情识别 被引量:1

Pain Expression Recognition Based on SLPP and MKSVM
下载PDF
导出
摘要 为提高痛苦表情识别的准确率,提出一种基于监督保局投影(SLPP)与多核线性混合支持向量机(MKLMSVM)的识别方法。引入先验类标签信息的SLPP获取痛苦表情特征,以解决保局投影方法在未使用先验类标签信息的情况下忽略类内局部结构的问题,并采用MKLMSVM实现痛苦表情的分类。实验结果表明,该方法的识别准确率可达88.56%,明显优于主动外观模型方法,与一般的支持向量机分类相比,可以提升决策函数的可解释性及分类性能。 In order to improve the accuracy rate of pain expression recognition, a method is proposed based on Supervised Locality Preserving Projections(SLPP) and Multiple Kernel Linear Mixture Support Vector Machines(MKLMSVM). The SLPP using prior class label information is adopted for extracting feature of pain expression, which can solve the problem that LPP ignores the within-class local structure without the use of the prior class label information, and then MKLMSVM is employed for recognizing pain expression. Experimental results demonstrate that the accuracy of the proposed approach can reach 88.56%, and is significantly better than the Active Appearance Models(AAM), compared with normal Support Vector Machine(SVM), which can improve the interpretability of decision function and classifier performance.
出处 《计算机工程》 CAS CSCD 2013年第12期196-199,共4页 Computer Engineering
基金 国家博士点基金资助项目(20090162110057) 湖南省科技计划基金资助项目(2011GK3213)
关键词 痛苦表情识别 监督保局投影 先验类标签 多核支持向量机 多核线性混合 主动外观模型 pain expression recognition Supervised Locality Preserving Projections(SLPP) prior class label Multiple Kernel SupportVector Machines(MKSVM) multiple kernel linear mixture: Active Appearance Models(AAM)
  • 相关文献

参考文献12

  • 1高现文,付炜,祝鹏.基于Contourlet变换与LPP的表情识别[J].计算机工程,2012,38(6):184-186. 被引量:2
  • 2Ashraf A B,Lucey S,Cohn J F,et al.The Painful Face-pain Expression Recognition Using Active Appearance Models[J].Image and Vision Computing,2009,27(12):1788-1796.
  • 3Xiao Yongliang,Xia Limin.Shot Boundary Detection Based on Supervised Locality Preserving Projections and KNN-SVM Classifier[C]//Proceedings of the 2nd International Asia Conference on Informatics in Control,Automation and Robotics.Wuhan,China:[s.n.],2010.
  • 4Xiao Yongliang,Xia Limin,Zhang Wei.Face Recognition with Supervised Spectral Regression and Multiple Kernel SVM[C]//Proceedings of the 2nd IEEE International Conference on Advanced Computer Control.Shenyang,China:[s.n.],2010.
  • 5付燕,鲜艳明.基于多特征和改进SVM集成的图像分类[J].计算机工程,2011,37(21):196-198. 被引量:8
  • 6He Xiaofei,Niyogi P.Locality Preserving Projections[C]// Proceedings of Conference on Advances in Neural Information Processing Systems.Vancouver,Canada:IEEE Press,2003.
  • 7Yu Xuelian,Wang Xuegang,Liu Benyong.Supervised Kernel Neighborhood Preserving Projections for Radar Target Recognition[J].Signal Processing,2008,88(9):2335-2339.
  • 8Sch?lkopf B,Smola A J.Learning with Kernels:Support Vector Machines Regularization,Optimization and Beyond[M].[S.l.]:MIT Press,2002.
  • 9Vedaldi A,Gulshan V,Varma M,et al.Multiple Kernels for Object Detection[C]//Proceedings of International Conference on Computer Vision.Kyoto,Japan:IEEE Press,2009.
  • 10Fu Siyao,Yang Guosheng,Hou Zengguang,et al.Multiple Kernel Learning from Sets of Partially Matching Image Features[C]//Proceedings of the 19th International Conference on Pattern Recognition.Tampa,USA:IEEE Press,2008.

二级参考文献17

  • 1沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 2Murphy C W, Harvey D M, Nicolson L J. Low Cost TMS320C40/XC6200 Based Reconfigurable Parallel Image Processing Architecture [C]. Proc. of IEE Colloquium on Reconfigurable Systems, Glasgow, UK. 1999 : 91 - 95.
  • 3Mucheroni M L, Moron C E, Saito J H. ArchMDSP: Using DSPs for Parallel Image Processing[C]. Proceedings of the 23rd Euromicro Conference, 1997:584 -590.
  • 4Yu Lei, Liu Huan. Efficient Feature Selection via Analysis of Relevance and Redundancy[J]. Journal of Machine Learning Research, 2004, 5: 1205-1224.
  • 5Hsu Chih-Wei, Lin Chih-Jen. A Comparison of Methods for Multi-class Support Vector Machines[J]. IEEE Trans. on Neural Networks, 2002, 13(2): 415-425.
  • 6Chang Ya, Hu Changbo, Turk M. Probabilistic Expression Analy- sis on Manifolds[C]//Proc. of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: [s. n.], 2004.
  • 7Shan Caifeng, Gong Shaogang, McOwan P W. Appearance Mani- fold of Facial Expression[C]//Proc. of IEEE International Work- shop on Computer Vision in Human-computer Interaction. Beijing, China: [s. n.], 2005.
  • 8Do M N, Vetterli M. The Contourlet Transform Efficient Direc- tional Multiresolution Image Representation[J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106.
  • 9He Xiaofei, Niyogi P. Locality Preserving Projections[C]//Proc. of Conference on Neural Information Processing Systems. Vancouver, Canada: [s. n.], 2003.
  • 10Shintani S, Murohara T, Ikeda HM, et al. Augmentation of Postnatal Neovascularization With Autologous Bone Marrow Transplantation. Circulation , 2001,13(2): 897 - 903

共引文献15

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部