期刊文献+

高性能浮点除法和开方的设计与实现 被引量:1

Design and Implementation of High-performance Float-point Division and Square Root
下载PDF
导出
摘要 在基于现场可编程门阵列(FPGA)的设计中,低延时、高吞吐量、小面积是3个主要考虑因素。针对以上因素,提出不同基数SRT浮点除法和开方算法,设计基于Virtex-II pro FPGA的可变位宽浮点除法和开方的3种实现方案,包括小面积的迭代实现、低延时的阵列实现和高吞吐量的流水实现。实验结果表明,对于浮点除法和开方算法的流水实现,在综合面积符合要求的基础上,实现频率最高分别可达到180 MHz和200 MHz以上,证明了该实现方案的有效性。 Low latency, high throughput and small area are three major design considerations of a design based on FPGA. In view of the above factors, this paper puts forward different cardinal SRT float-point division and square root algorithm. It designs three implementations of float-point division and square root operations with variable width based on Virtex-II pro FPGA. One is a low cost iterative implementation, another is a low latency array implementation, and the third is a high throughput pipelined implementation. Experimental results show that the highest frequencies for the float-point division and square root algorithm can reach above 180 MHz and 200 MHz respectively with meeting the needs of synthesized area. it fully verifies the effectiveness of the implementation plan.
出处 《计算机工程》 CAS CSCD 2013年第12期264-268,共5页 Computer Engineering
基金 国家"863"计划基金资助项目(2009AA012201)
关键词 SRT算法 选择函数 可变位宽 浮点除法 开方 迭代实现 阵列实现 流水实现 资源消耗 SRT algorithm selection function variable width float-point division/square root iterative implementation arrayimplementation pipelined implementation resource consumption
  • 相关文献

参考文献15

  • 1Ercegovac M D,Lang T.Division and Square Root:Digit Recurrence Algorithms and Implementations[M].Mass,Norwell:Kluwer Academic Publishers,1994.
  • 2Flynn M J,Oberman S F.Advanced Computer Arithmetic Design[M].New York,USA:John Wiley & Sons Inc.,2001.
  • 3Oberman S F,Flynn M J.Design Issues in Division and Other Floating-point Operations[J].IEEE Transactions on Computers,1997,46(2):154-161.
  • 4Louie M E,Ercegovac M D.Mapping Division Algorithms to Field Programmable Gate Arrays[J].Systems and Computers,1992,1(1):371-375.
  • 5Louie M E,Ercegovac M D.On Digit Recurrence Division Implementations for Field Programmable Gate Arrays[C]// Proc.of the 26th Asilomar Conference on Signals,Systems and Computers.[S.l.]:IEEE Press,1992:371-375.
  • 6Louie M E,Ercegovac M D.A Digit Recurrence Square Root Implementation for Field Programmable Gate Arrays[J].Custom Computing Machines,1993,46(2):178-183.
  • 7Shirazi N,Walters A,Athanas P.Quantitative Analysis of Floating Point Arithmetic on FPGA Based Custom Computing Machines[C]//Proc.of IEEE Symposium on FPGAs for Custom Computing Machines.[S.l.]:IEEE Press,1995:155-162.
  • 8Li Yamin,Chu Wanming.Implementation of Single Precision Floating Point Square Root on FPGAs[C]//Proc.of the 5th Annual IEEE Symposium on Field Programmable Custom Computing Machines.[S.l.]:IEEE Press,1997:226-232.
  • 9Parhami B.Computer Arithmetic:Algorithms and Hardware Designs[M].New York,USA:[s.n.],2000.
  • 10汪小志,高珍冉,刘志刚.单精度浮点除法器的优化设计与仿真[J].电工文摘,2012(2):50-52. 被引量:3

二级参考文献19

  • 1刘慧英,戴春蕾,高茁.高性能除法电路仿真与实现[J].仪表技术与传感器,2006(6):38-39. 被引量:8
  • 2华东.SRT除法器及其算法的研究[J].计算机工程与设计,2007,28(1):248-248. 被引量:3
  • 3Guenter Gerwig, Holger Wetter, Eric M. Schwarz, Juergen Haess. High Performance Floating - Point Unit with 116 Bit Wide Divider [ C ]. Computer Arithmetic : 16th IEEE Symposium on, 2003.
  • 4Mohamed Anane, Hamid Bessalah, Mohamed Issad. High- er Radix and Redundancy Factor for Floating Point SRT Division[ J]. IEEE Transactions on, Very Large Scale In- tegration Systems,2008,16 (6) : 774 - 779.
  • 5D E Atkins. Higher Radix, Non-Restoring Division: History and Recent Developments. In Proc. 3rd IEEE Symposium on Computer Arithmetic, 1975:158-160.
  • 6A Svoboda. An algorithm for Division. Information Processing Machines, (Stroje na Zpracovani Informaci), 1963,9:25-34.
  • 7M D Ercegovac, T Lang, P Montuschi. Very High Radix Division with Selection by Rounding and Prescaling. In Proc. 11th IEEE Symposium on Computer Arithmetic,1993:112-119.
  • 81VI D Ercegovac, T Lang. On-the-fly Rounding. IEEE Trans. Comput., Dec. 1992, 41(12): 1497-1503.
  • 9刘志刚,汪旭东,郑关东.基于SRT算法的单精度浮点除法器[J].电子技术应用,2007,33(10):56-58. 被引量:4
  • 10P.Soerquist,M.Leeser. Area and performance tradeoffs in floating-point divide and square-root implementations[J].ACM Computing Surveys,.

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部