期刊文献+

基于改进QPSO算法优化SVR的上证指数预测 被引量:4

Prediction of Shanghai Composite Index Based on SVR Optimized by Improved QPSO Algorithm
下载PDF
导出
摘要 研究证券指数预测问题,证券指数变化具有时变性、不确定性、非线性等特点,传统的线性预测方法无法正确反映证券指数的变化规律,且神经网络存在局部极小值、过拟合、泛化能力不强等缺陷,预测精度比较低。为了提高证券指数的预测精度,提出了一种利用改进量子粒子群(QPSO)算法优化SVR的证券指数预测方法(改进的QPSO-SVR)。首先采用改进的QPSO算法优化SVR的参数,然后将优化后的SVR对证券指数的非线性变化规律进行建模。最后选取2002年10月18日到2004年1月9日上证指数的历史相关数据进行实验。实验结果表明,采用改进的QPSO-SVR提高了证券指数的预测精度,减少了预测误差。预测结果能够为股票投资者提供有价值的参考意见。 Study Shanghai composite index forecasting based on Support Vector Regression (SVR). This paper proposed a stock index forecasting method based on SVR optimized by improved quantum - behaved particle swarm optimization(QPSO) algorithm( Improved QPSO- SVR). Firstly, the parameters of SVR were optimized by the im- proved QPSO algorithm. Secondly, the optimized SVR was used to establish a prediction model. The model reflectes the change rule of the stock index. Finally, the historical data of Shanghai composite index from October 18, 2002 to January 9, 2004 were used for simulation test. The experimental results show that, the improved QPSO - SVR can improve the accuracy of the stock index forecasting and reduce the prediction error. The forecasting results can provide valuable advice for stock investors.
出处 《计算机仿真》 CSCD 北大核心 2013年第12期208-213,共6页 Computer Simulation
基金 国家自然科学基金项目(41161065) 贵州省省长基金项目(黔省专合字(2009)115) 贵州省科技创新人才团队(黔科合人才团队(2012)4009)
关键词 回归型支持向量机 上证指数 粒子群算法 量子粒子群算法 参数优化 预测模型 Support vector regression(SVR) Shanghai composite index Particle swarm optimization algorithm Quantum -behaved particle swarm optimization algorithm Parameter optimization Prediction model
  • 相关文献

参考文献8

二级参考文献38

共引文献202

同被引文献39

  • 1李立辉,田翔,杨海东,胡月明.基于SVR的金融时间序列预测[J].计算机工程与应用,2005,41(30):221-224. 被引量:12
  • 2Lawrence S.,Giles C. L.,Tsoi A. C.Lessons in neural network training:Overfitting may be harder thanexpected [C]Proceedings of the Fourteenth National Conference on Artificial lntelligence,Mento Park, CA:AAA1 Press, 1997.
  • 3Vapnik V. N.The Nature of Statistical Learning Theory [M]. Springer, 1995.
  • 4Buyya R, Abramson D, Venugopal S. The grid economy [J]. Proceedings of the IEEE, 2005,93(3) :698-714.
  • 5Maharaj E A, D' Urso P. A coherence-based approach for the pattern recognition of time series[ J ]. Physica A: Sta- tistical Mechanics and its Applications, 2010,389 ( 17 ) : 3516-3537.
  • 6Caiado J, Crato N, Pefiad D. A periodogram-based metric for time series classification [ J]. Computational Statist & Data Analysis, 2006,50(10) :2668-2684.
  • 7Frey B J, Dueck D. Clustering by passing messages between data points[J]. Science, 2007,315(5814):972-976.
  • 8Sambasivam S, Theodosopoulos N. Advanced data cluste- ring methods of mining Web documents [ J ]. Issues in In- forming Science and Information Technology, 2006 (3): 563-579.
  • 9Bohm C, Berchtold S, Keim D A. Searching in high-di- mensional spaces-index structures for improving the per- formance of multimedia databases [J].ACM Computing Surveys, 2001,33 ( 3 ) :322-373.
  • 10Fang S H, Lin T N. Principal component localization in in- door WLAN environments [ J]. IEEE Transactions on Mo- bile Computing, 2012,11 ( 1 ) : 100-110.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部