期刊文献+

基于相互作用的耦合振子群体动力系统仿真

Simulation for Dynamic System Based on Interacting Coupled-Oscillator Ensembles
下载PDF
导出
摘要 大规模振子经耦合所形成的网络广泛存在于自然界的众多领域。由于存在高维非线性系统,研究网络的群体行为,是对其进行设计控制和应用的前提。但是,对耦合振子网络群体构造的特定高维系统的研究往往涉及的大规模数值计算,算法如果仅基于CPU的计算平台往往会存在效率低的问题。为解决上述问题,提出了一种基于CPU+GPU平台的异构并行算法。算法首先设计了高效GPU内核程序,然后借助GPU加速,相对基于仅CPU的平台,效率提高了近30倍,实现了耦合振子网络的高效仿真。 It is a wide range of existence of networks formed by coupled large - scale oscillators in the nature. The study of the group behavior of the networks is a premise that carries on designing, controlling and putting into application. However, the problem of massive numerical calculation and the low efficiency of the computing platform based on CPU are often involved in the research of the high - dimension system built by the coupled oscillator network groups. In order to solve the problems mentioned above, the paper first presented a heterogeneous parallel algorism based on CPU&GPU platform and developed a high efficient GPU kernel program. Then by adding GPU into the plat-form, the efficiency of the new platform was increased nearly 30 times compare to the CPU platform. Finally, the high efficient simulation of the coupled oscillator network was implemented.
出处 《计算机仿真》 CSCD 北大核心 2013年第12期219-223,共5页 Computer Simulation
基金 国家自然科学基金资助项目(61104150 10972082)
关键词 耦合振子网络 异构平台 并行计算 Coupled oscillator network Heterogeneous platform Parallel computing
  • 相关文献

参考文献19

  • 1A Pikovsky, et al. Synchronization: a universal concept in nonlinear science[M]. Cambridge university press, 2003.
  • 2Z N6da, et al. The sound of many hands clapping - Tumultuous applause can transform itself into waves of synchronized clapping [J]. Nature, 2000,403 (6772) : 849 - 850.
  • 3S H Strogatz, et al. Theoretical mechanics: Crowd synchrony on the Millennium Bridge[J]. Nature, 2005,438(7064) :43 -44.
  • 4D Gonze, N Markadieu, A Goldbeter. Selection of in - phase or out - of - phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations [ J ]. Chaos: An In- terdisciplinary Journal of Nonlinear Science, 2008,18 (3) : 037127 - 037127 - 12.
  • 5I Osorio, et al. Epilepsy : The Intersection of Neurosciences, Biol- ogy, Mathematics, Engineering and Physics [ M ]. CRC Press, 2011.
  • 6I Z Kiss, Y Zhai, J L Hudson. Emerging coherence in a population of chemical oscillators[J]. Science, 2002,296(5573) : 1676 - 1678.
  • 7M C Cross, P C l-Iohenberg. Pattern formation outside of equilibri- una[J]. Reviews of Modem Physics, 1993,65(3) : 851.
  • 8Y Kuramoto. Self - entrainment of a population of coupled non - linear oscillators [ C 1. International symposium on mathematical problems in theoretical physics : Springer, 1975:420 - 422.
  • 9M Nixon, et al. Synchronized cluster formation in coupled laser networks [ J ]. Physical Review Letters, 2011,106 ( 22 ) : 223901.
  • 10M Bennett, K Wiesenfeld. Averaged equations for distributed Jo- sephson junction arrays [ J ]. Physica D : Nonlinear Phenomena, 2004,192(3) :196 -214.

二级参考文献3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部