期刊文献+

AuCo合金微粒-石墨烯复合膜修饰电极的制备及其在测定亚硫酸根中的应用 被引量:8

Preparation of AuCo Alloy Particles-Graphene Composite Film Modified Electrode and Its Application in Determination of Sulfite
下载PDF
导出
摘要 以石墨烯(GN)修饰玻碳电极(GCE)为基底,以HAuCl4,Co(NO3)2,Na2SO4及十二烷基磺酸钠(SDS)的混合溶液为电沉积液,在-1.0 V(vs.SCE)恒电位沉积制备出新型AuCo合金微粒修饰电极(AuCo/GN/GCE).所得AuCo微粒呈球形带刺状,均匀分布在石墨烯表面.它对SO32-的电氧化表现出催化作用,在酸性溶液中SO32-可在AuCo/GN/GCE上产生灵敏的氧化峰.在优化后的实验条件下,AuCo/GN/GCE在0.4V对SO32-的响应电流与其浓度在0.5~28 μmol/L和36~ 324 μmol/L范围内呈线性关系,检出限为0.2μmol/L(S/N=3).该电极具有良好的重现性和稳定性,将其用于饮品中SO32-的电化学测定,加标回收率为94%~109%. AuCo particles were electrodeposited on a graphene (GN) coated glassy carbon electrode (GCE) at -1.0 V (vs. SCE) from 1 mmol/L HAuC14+ 20 mmol/L Co(NO3)2+ 0.2 mol/L Na2SO4+ 0.04 mmol/L sodium dodecyl sulfonate solution. The obtained AuCo particles showed spherical shape with thorns and they were well distributed on the GN surface. The AuCo alloy particles presented catalysis to the electrochemical oxidation of sulfite that could produce a sensitive anodic peak at the resulting AuCo/GN/GCE electrode in H2SO4 solution. Under the optimized conditions the response current of the electrode at 0.4 V and the sulfite concentration presented linear relationship over the ranges of 0.5- 28 μmol/L and 36- 324 μmol/L. The detection limit was 0. 2 μmol/L ( S/N = 3 ). The modified electrode also displayed good stability and reproducibility. When it was applied to the determination of sulfite in drink samples the recovery for standard addition was 94% - 109%.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第11期1714-1718,共5页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.21075092)资助项目
关键词 AuCo合金 亚硫酸根 电沉积 石墨烯 Gold-cobalt alloy Sulfite Electrodeposition Graphene
  • 相关文献

参考文献19

  • 1Martins S I F S,Jongen W M F,van Boekel M A J S. Trends Food Sci. Tech. , 2000, 11(9-10) : 364-373.
  • 2Meng Z, Sang N, Zhang B. Bull. Environ. Contain. Toxicol. , 2002, 69 (2) : 257-264.
  • 3Safavi A, Moradlou O, Maesum S. Talanta, 2004, 62(1) : 51-56.
  • 4Bonifacio R L, Coichev N. Anal. Chim. Acta, 2004, 517(1-2) : 125-130.
  • 5Perfetti G A, Diachenko G W. J. AOAC Int. , 2003, 86(3) : 544-550.
  • 6Salimi A, Abdi K, Khayatiyan G R. Electrochim. Acta, 2004, 49(3) : 413-422.
  • 7汪雪,李辉,吴敏,葛淑丽,朱妍,王清江,何品刚,方禹之.分析化学,2013,41(8):1232-1237.
  • 8Safavi A, Maleki N, Momeni S, Tajabadi F. Anal. Chim. Acta, 2008, 625(1) : 8-12.
  • 9Garcia T, Casero E, Lorenzo E, Pariente F. Sens. Actuators B, 2005, 106(2) : 803-809.
  • 10Zhao M, Hibbert D B, Gooding J J. Anal. Chim. Acta, 2006, 556(1) : 195-200.

同被引文献111

  • 1周德庆,张双灵,辛胜昌.亚硫酸盐在食品加工中的作用及其应用[J].食品科学,2004,25(12):198-201. 被引量:96
  • 2郭丽萍,莫海涛,卢家炯,武金良.离子色谱法测定黄花菜中的亚硫酸盐[J].食品科技,2006,31(5):108-110. 被引量:26
  • 3HJ490-2009.水质银的测定:镉试剂2B分光光度法[S].,..
  • 4Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J]. Anal Chem, 2009,81 : 2378-2382.
  • 5Kang X,Wang J,Wu H,et al. Glucose oxidase-graphene- chitosan modified electrode for direct electrochemistry and glucose sensing[J]. Biosens Bioelectron, 2009,25 (4) : 901-905.
  • 6Zeng Q,Chen J,Liu X,et aL Palladium nanopartiele/chitosan- grafted graphene nanocomposites for construction of a glucose biosensor[J]. Biosens Bioelectron, 2011,26( 8 ) : 3456-3463.
  • 7Ohno Y, Maehashi K, Matsumoto K. Chemical and biological sensing applications based on graphene field-effect transistors [J]. Biosens Bioelectron,2010,26(4) : 1727-1730.
  • 8Wu S, Lan X, Huang F, et aL Selective electrochemicaldetection of cysteine in complex serum by grapheme nanoribbon [J]. Biosens Bioelectron, 2012,32( 1 ) :293-296.
  • 9Safavi A, Maleki N, Momeni S, et al. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode:application to the analysis of some real samples[J]. Anal Chim Acta, 2008,625 ( 1 ) : 8-12.
  • 10Yue R, Lu Q, Zhou Y. A novel nitrite biosensor based on single-layer graphene nanoplatelet-protein composite film[J]. Biosens Bioelectron, 20l 1,26( 11 ) : 4436-4441.

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部