期刊文献+

一类具有非线性发生率的病毒动力学模型分析(英文) 被引量:3

Analysis for a Kind of Viral Dynamical Model with Nonlinear Incidence Rate
下载PDF
导出
摘要 研究了一类具有非线性发生率的病毒动力学模型,讨论了模型解的有界性、平衡点的存在性和稳定性、系统的持续性等,得到了病毒清除和持续的阈值,并讨论了药物治疗对体内病毒数量的影响. A kind of viral dynamical model with nonlinear incidence rate was investigated. Mathematical analysis of the model with regard to boundedness of solutions, nature of equilibria, permanence and stability were performed. The threshold conditions for virus be cleared and persisting were obtained. The effectiveness of drug treatment on virus was also discussed.
作者 郑丽丽 王娟
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2013年第4期481-484,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 Natural Science Foundation of Henan Province(112300410056) Natural Science Foundation of Henan Ministry of Education(13A110769)
关键词 病毒模型 阈值条件 持续性 稳定性 viral model threshold condition permanence stability
  • 相关文献

参考文献6

  • 1Regoes R R, Wodarz D, Nowak M A. Virus dynamics z the effect of target cell limitation and immune responses on virus evolution[J]. J Theor Biol, 2010,191:451-462.
  • 2Alizon S, Lion S. Within-host parasite cooperation and the evolution of virulence[J]. Proc R Soc B, 20il ,278 : 3738-3747.
  • 3Debroy S, Bolker B, Martcheva M. Bistability and long-term cure in a within-host of Hepatitis C[J], J Biol Systems, 2011,19 (4) :533-550.
  • 4Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in hepatitis B virus infection[J], Proc Nati Acad Sci USA, 1996,93 : 43984409,.
  • 5Verotta D, Sohaedeli F. Non-linear dynamics models characterizing long-term virological data from AIDS clinical trials[J]. Math Biosci, 2002, 176:163-170.
  • 6Perelson A S, Kirschner D E, De Boer R. Dynamics of HIV infection of CD4^+ T cells [J], Math Biosci, 1993, 114 : 81-89.

同被引文献28

  • 1Rogers D J,Onstad D W,Killick-Kendrick R.The dynamics of vector-transmitted diseases in human communities[J].Philosophical Transactions of the Royal Society of London.Biological Sciences:B,1988,321(1207):513-539.
  • 2McKenzie F E.Why model malaria?[J].Parasitology Today,2000,16(12):511-516.
  • 3Rodríguez D J,Torres-Sorando L.Models of infectious diseases in spatially heterogeneous environments[J].Bulletin of Mathematical Biology,2001,63(3):547-571.
  • 4Ishikawa H,Ishii A,Nagai N,et al.A mathematical model for the transmission of Plasmodium vivax malaria[J].Parasitology International,2003,52(1):81-93.
  • 5Lashari A A,Zaman G.Global dynamics of vector-borne diseases with horizontal transmission in host population[J].Computers & Mathematics with Applications,2011,61(4):745-754.
  • 6Cai L M,Li X Z,Li Z.Dynamical behavior of an epidemic model for a vector-borne disease with direct transmission[J].Chaos,Solitons & Fractals,2013,46:54-64.
  • 7Mpolya E A,Yashima K,Ohtsuki H,et al.Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters[J].Journal of Theoretical Biology,2014,343:120-126.
  • 8Wei H M,Li X Z,Martcheva M.An epidemic model of a vector-borne disease with direct transmission and time delay[J].Journal of Mathematical Analysis and Applications,2008,342(2):895-908.
  • 9Diekmann O,Heesterbeek J A P,Metz J A J.On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J].Journal of Mathematical Biology,1990,28(4):365-382.
  • 10Perelson A S,Nelson P W.Mathematical analysis of HIV-1 dynamics in vivo[J].SIAM Review,1999,41(1):3-44.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部