期刊文献+

基于图论及应变花的光纤自诊断网络可靠性研究 被引量:3

Studies on the Reliability of the Optic Fiber Self-diagnosing Network Based on the Graph Theory and Strain Rosette
下载PDF
导出
摘要 以某飞机机翼盒段上布置的对结构应变分布进行监测的光纤Bragg光栅自诊断传感网络为例,对提高光纤自诊断网络系统的可靠性方法进行了研究.在传感器排布方式上,对监测点采用光纤应变花的形式;在网络连接上,采用图论中邻接矩阵的方法通过使光开关动作为失效传感器寻找新的解调路径,实现信号的重新解调.结果表明,采用图论中对邻接矩阵的运算同传感器容错技术相结合,可使光纤网络系统在一根或几根传感器信号同时失效时,在不破坏结构的前提下,仍能利用受损区域内存活的光纤传感器,完成自诊断网络的自修复,达到提高网络可靠性的要求. For improving the reliability of the optic fiber self-diagnosing system, a Fiber Bragg Grating sensor net- work which is applied to monitor the strain distribution of a certain aircraft wing box is researched. Considering the sen- sor arrangement, the optic fiber strain rosette is adopted in the monitoring point. Considering the network connecting type, the optical switch and the adjacent matrix of the graph theory is adopted to connect the demodulation equipment for the disabled sensor signal in a different path once more, thus the disabled sensor signal can be demodulated again in the optic fiber sensor network. The research results indicate that if one or more sensor signals in the optic fiber net- work system disabled simultaneously, depending on the healthy Fiber Bragg Grating sensor in the damaged regions, the adjacent matrix of the graph theory combining with the fault-tolerant technique can be adopted to achieve the self-recov- ery of the self-diagnosing sensor network without damaging the structure.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2013年第4期581-586,共6页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(51275239) 国家自然科学基金国际交流项目(51161120326) 博士学科点专项科研基金(20123218110003) 江苏省科技支撑计划项目(BE2011181) 航空基金项目(2011ZA52013 20125652055) 江苏高校优势学科建设工程资助项目 河南省教育厅科学技术研究重点项目(13A510770)
关键词 光纤自诊断网络 光纤应变花 图论 自修复 可靠性 fiber self-diagnosing network optic fiber strain rosette graph theory self-recovery reliability
  • 相关文献

参考文献12

二级参考文献38

  • 1陈亮,黄俊斌.光纤布拉格光栅传感器阵列实时解调方案的研究[J].舰船电子工程,2008,28(12):185-188. 被引量:3
  • 2梁大开,李东升,潘晓文.智能结构中光纤智能夹层力学特性的实验研究[J].应用力学学报,2006,23(1):150-153. 被引量:8
  • 3付建伟,肖立志,张元中,赵晓亮,陈海峰,潘一,廖广志.分布式光纤Bragg光栅波长校准方法[J].光学技术,2006,32(6):903-905. 被引量:5
  • 4SPILLMAN W B, SIRKIS J S, GARDINER P T. Smart materials and structures, What are they [ J ]. Smart mater. Struct, 1996,5:245-254.
  • 5CHERKASSKY V. Comparison of model selection for regression [ J ]. Neural Computation, 2003, 15 ( 7 ) : 1691-1714.
  • 6TRIVEDI H V, SINGH J K. Application of grey system theory in the development of a runoff prediction model [ J]. Biosystems Engineering,2005,4(92) :521-526.
  • 7BAO R CH, HSIU F T. Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity [ J ]. Expert Systems with Applications. 2008,34 (2) :925-934.
  • 8BURGES C J C. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery. 1998,2(2) :955-974.
  • 9TOMANDL D, SCHOBER A. A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust ' black box' -tool for data analysis [ J ]. Neural Networks, 2001,8 (14) : 1023-1034.
  • 10[1]阮哓青,周义仓.数学建模引论[M].北京:高等教育出版社.2005.

共引文献34

同被引文献32

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部