期刊文献+

多铁性材料BiFeO_3超结构的量子衍生现象 被引量:2

Emergent Phenomena at Multiferroic BiFeO_3 Superstructures
下载PDF
导出
摘要 在过去的十余年时间里,多铁材料所蕴含的丰富多彩的物理特性以及广泛的应用前景引起了人们的广泛关注。其中模型室温多铁材料BiFeO3(BFO)因其卓越的铁电特性以及所伴随的室温反铁磁特性而成为多铁领域的明星材料,受到凝聚态物理以及材料科学家的格外青睐。研究人员围绕着BFO的结构、铁电、磁学以及磁电耦合等特性开展了一系列开创性的研究。而BFO也成为了进行受限尺度量子调控研究的模型体系,形成了异质界面、畴壁、相界以及纳米结构等多种超结构体系。本文将着重介绍由多铁性材料BFO所构成的这一系列丰富多彩的超结构体系中,因为量子受限作用所表现出的衍生现象以及功能特性。在着重介绍BFO超结构的磁电耦合特性的同时,本文还将介绍该系列超结构所体现出的输运、光电、压电等功能特性。文章最后,笔者还将就多铁性材料超结构领域的研究前景进行展望。 In the past decade, multiferroic materials have attracted extensive research interests due to the rich physics involved and promising potential applications. Being the prototype room temperature multiferroic, BiFeO3 (BFO) becomes one of the focal points for the condensed matter physics and materials science studies, particularly due to its prominent ferroelectric properties and above room-temperature antiferromagnetic transition temperature. Researchers have carried out a series of seminal studies with great attentions to the structure, ferroelectric, magnetic and magnetoelec- tric properties of this "star material". BFO also becomes a model system to study the emergent phenomena at the quantum-confined superstructures, such as heterointerface, ferroelectric domain wall, structure phase boundary, nano-pillar, superlattice and so on. In this paper, we review the recent studies on the understanding of novel functionalities formed at a series of BFO superstruc- tures due to the quantum confinement effects. We focus on not only the magnetoelectric coupling at the BFO superstructures, a central question of multiferroic studies, but also the other function- alities, such as local transport, photovoltaic, piezoeleletric, etc. We summarize by highlighting several possible and promising direction for the future studies of multiferroic superstructures.
作者 于浦 张金星
出处 《物理学进展》 CSCD 北大核心 2013年第6期369-381,共13页 Progress In Physics
关键词 多铁性 磁电耦合 异质界面 畴结构 纳米结构 衍生现象 multiferroic magnetoelectric coupling heterointerface domain structure, nano- structure emergent phenomena
  • 相关文献

参考文献2

二级参考文献11

  • 1Y.T.Chen,et al.,Solar Energy 71(3) (2001) 155.
  • 2Y.T.Chen,et al.,Solar Energy 72(6) (2002) 531.
  • 3Y.T.Chen,et al.,J.of Solar Energy Engineering 126(2004) 638.
  • 4Y.T.Chen,et al.,J.of Solar Energy Materials and Solar Cells 80 (2003) 305.
  • 5Y.T.Chen,K.K.Chong,B.H.Lim,and C.S.Lim,Solar Energy Materials and Solar Cells 79 (2003) 1.
  • 6Y.T.Chen,et al.,Solar Energy 79 (2005) 280.
  • 7Y.T.Chen,B.H.Lim,and C.S.Lim,Solar Energy (2005),In Press.
  • 8H.Ries and M.Schubnell,Solar Energy Materials 21(1990) 213.
  • 9R.Zaibel,E.Dagan,J.Karni,and H.Ries,Solar Energy Materials and Solar Cells 37 (1995) 191.
  • 10Di R.,and Tumer N.E.,2005,Expression of a truncated form of ribosomal protein L3 confers resistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol,Mol.Plant Microbe Interact.18:762-770

共引文献58

同被引文献9

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部