期刊文献+

细菌纤维素增强聚羟基丁酸酯复合材料的制备及性能 被引量:1

Preparation and Properties of Bacterial Cellulose/Poly(Hydroxybutyrate)Composite
下载PDF
导出
摘要 利用细菌纤维素(BC)作为增强材料,采用溶液浸渍法制备了细菌纤维素/聚羟基丁酸酯(PHB)复合材料,并利用红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线衍射(XRD)及力学性能测试对细菌纤维素/聚羟基丁酸酯复合材料的特征进行了研究。结果表明,PHB可以较好地渗透进入BC三维骨架中形成复合材料;在复合材料中PHB和BC的结晶特征均没有发生根本改变,只是随着PHB含量的增加,其特征衍射峰强度变大、半峰宽变小;力学性能测试显示BC能够有效增强PHB的力学性能,复合材料的断裂强度可达91MPa,断裂伸长率为7.9%,冲击强度为47.8 J/m2,较纯PHB分别提高了310%、75%和140%,其杨氏模量约为1.18 GPa,提高了约100%。由于PHB和BC均是生物材料,这种复合材料在骨组织工程中有望获得应用。 Bacterial cellulose(BC)/poly(hydroxybutyrate)(PHB) composites were prepared by immersion method using bacterial cellulose as reinforcement and poly(hydroxybutyrate) as matrix. The characteristics of the bacterial cellulose/poly (hydroxybutyrate) composites were investigated by Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), X-ray diffraction pattern (XRD) and mechanical test. The results indicate that the PHB can penetrate into the three-dimensional network of BC. The crystal characteristics of PHB and BC have no change in the composites. However, with the PHB content increasing in the composites, the intensity of diffraction peaks of PHB becomes stronger and the width of half-peak becomes smaller. Mechanical test results show that the mechanical properties of PHB can be greatly improved by BC reinforcement. The tensile strength, elongation at break, Young's Modulus and impact strength of BC/PHB achieve 91MPa, 7.9%, 47.8 J/m2 and 1.18 GPa, respectively, which has the improvement of 310 %, 75 %, 140 % and 100 % respectively compared with those of pure PHB. Since PHB and BC are both biomaterials, this BC/PHB composite might be have promising potential applications in the field of bone tissue engineering.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2013年第12期176-179,184,共5页 Polymer Materials Science & Engineering
基金 天津市自然科学基金资助项目(11JCYBJC02500)
关键词 细菌纤维素 聚羟基丁酸酯 复合材料 bacterial cellulose poly(hydroxybutyrate) composite
  • 相关文献

参考文献9

  • 1Klemm D, Heublein B, Fink H P, et al. Cellulose: Fascinating biopolymer and sustainable raw materiaI[J ]. Angew. Chem. Int. Ed., 2005, 44(22): 3358-3393.
  • 2White D G, Brown R M Jr. Prospects for the commercialization of the biosynthesis of microbial cellulose// Schuerch C. Cellulose and Wood of Chemistry and Technology[ M]. New York: John Wiley & Sons, 1989: 573-590.
  • 3Brown E E, Laborie M P G. Bioengineering bacterial eellulose/poly(ethylene oxide) nanocomposites [ J ]. Biomacromolecules, 2007, 8 (10) : 3074-3081.
  • 4Charpentier P A, Maguire A, Wan W. Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device[J]. Appl. Surf. Sci., 2006, 252(18): 6360-6367.
  • 5Lee K Y, Tang M, Williams C K, et al. Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposltes[J]. Compos. Sci. Technol., 2012, 72 (12) : 1646-1650.
  • 6Wan Y Z, Luo H, He F, et al. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites[J]. Compos. Sci. Technol. , 2009, 69(7-8):1212-1217.
  • 7Yano H, Sugiyama J, Nakagaito A N, et al. Optically transparent composites reinforced with networks of bacterial nanofibers[J]. Adv. Mater., 2005, 17(2): 153-155.
  • 8Slater S C, Gallaher T, Dennis D, et al. Cloning and expression in Escherichia coil of the Alcaligenes eutrophus H16 poly-beta- hydroxybutyrate biosynthetic pathway[J]. J. 13acteriol. , 1988, 170 (10) : 4431-4436.
  • 9Barud H S, Souza J L, Santos D B, et al. Bacterial cellulose/poly(3- hydroxybutyrate) composite membranes [ J ]. Carbohyd. Polym. , 2011, 83(3) : 1279-1284.

同被引文献50

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部