期刊文献+

汉语情感倾向自动分类方法的研究 被引量:2

Research on Automatic Classification of Sentimental Orientation in Chinese
下载PDF
导出
摘要 随着WEB2.0的迅猛发展,汉语情感倾向分类在许多不同的领域取得了广泛的应用。同时,文本情感倾向分类也是当前学术界的热门课题之一。本文旨在探究一种汉语情感倾向分类方法,通过构造一种自动分类系统,对商品评价信息进行正类、负类和中立的三分类。本文采用一个两级分类系统实现三分类,首先第一级将文本分为极性和中立两部分,然后第二级再将极性文本分为正类和负类。在文本分类方法方面,采用了基于情感词、基于规则和TSVM等不同的方法。本文最后组织了分类实验对系统效果加以验证,并对实验结果进行了分析。 Along with the rapid development of WEB2.0, automatic sentiment orientation classification gets globally used in various areas. Also, it is one of the most popular topics in the academia. The goal of this research is to construct an automatic classifier and identify the sentimental orientation of merchandise comments, dividing these texts into three categories: positive, negative and neutral. This paper applies a two-level classification system to accomplish the goal. First, the level-one system divides the corpus into polarity part, which consists of positive and negative texts, and neutral part. Then, the level-two system divides the polarity corpus into positive part and negative part. As for the method to texts classification, different methods as sentimental word based, rule based and TSVM are used. At the end of this paper, several experiments are conducted to verify the effect of the system, followed by the analysis of the experiment results.
作者 王坤亮
出处 《软件》 2013年第11期73-76,共4页 Software
关键词 汉语情感倾向自动分类 基于情感词 基于规则 TSVM Chinese emotional tendencies automatic classification based on emotion word based on rules TSVM
  • 相关文献

参考文献5

二级参考文献44

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 4徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 5Wiebe J,Wilson T,Bruce R,et al.Learning subjective language[J]. Computational Linguistics, 2004,30(3 ) : 277-308.
  • 6Yu Hong,Hatzivassiloglou V.Towards answering opinion questions[C]// Proceeding of EMNLP, 2003.
  • 7Yi J,Nasukawa T,Bunescu R,et al.Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]//Proceeding of the Third IEEE International Conference on Data Mining,2003.
  • 8Hu Ming--qing,Liu BingaMining and summarizing customer reviews[C]// Proceedings of the Tenth ACM SIGKDD,2004:168-177.
  • 9Wang Chao,Lu Jie,Zhang Guang-quan.A semantic classification approach for online product reviews[C]//Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence(W/' 5) ,2005.
  • 10HowNet[R/OL].HowNet's Home Page.http://www.keenage.com.

共引文献616

同被引文献7

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部