期刊文献+

基因组重排选育胸苷磷酸化酶高产菌株 被引量:1

Screening and breeding of high thymidine phosphorylase-producing strains by genome shuffling
下载PDF
导出
摘要 以短乳杆菌为研究对象,通过基因组重排技术选育胸苷磷酸化酶高产菌株。首先采用紫外复合诱变筛选出EA_(42)、EB_(27)作为基因组重排育种的亲本并制备成原生质体,分别采用紫外照射50 min和60℃水浴加热60 min双亲灭活原生质体,然后用质量分数40%PEG 6000,30℃恒温诱导融合10 min进行基因组重排。经过3轮基因组重排育种,成功选育出3株胸苷磷酸化酶高产菌株,其中菌株F3-36在菌体发酵量提高的前提下,进行5次传代测试其胸苷磷酸化酶活均在2.500U/mg湿茵体,比原始茵株酶活提高了260%。 Genome shuffling was utilized to screen out the thymidine phosphrylase high-product strains. Firstly, Lactoba- ciUus brevis mutants, EA42 and EB27 strains, obtained by UV-irradiation, were served as the parents of genome shuffling breeding. The protoplasts of mutants mentioned above were irradiated by UV-irradiation for 50 rain, or heated at 60 ℃ for 60 min. Then, the inactivated parental protoplasts were fused with 40% PEG 6000 at 30 ℃ for 10 min. The fusants with high thymidine phosphorylase activity were as the parents for the next round of protoplast fusion. After three rounds of re- cursion fusion, three mutants with high thymidine phosphorylase activity and genetic stability were successfully screened. And the highest thymidine phosphorylase activity of the fusant F3-36 could reach 2. 500 U/mg wet cells, which was in- creased by 260% than that of the original strain.
出处 《工业微生物》 CAS CSCD 2013年第6期54-59,共6页 Industrial Microbiology
关键词 基因组重排 原生质体 短乳杆菌 胸苷磷酸化酶 genome shuffling protoplast Lactobacillus brevis thymidine phosphorylase
  • 相关文献

参考文献14

二级参考文献52

共引文献56

同被引文献21

  • 1Mussatto SI, Dragone G, Guimaraes PMR, et al. Technological trends, global market, and challenges of bio-ethanol production [J]. Biotechnol. Adv. , 2010, 28(6) : 817-830.
  • 2Zheng D, Zhang K, Gao K, et al. Construction of Novel Saccharomyces cerevisiae Strains for Bioethanol Active Dry Yeast (ADY) Production[J]. PLoS One, 2013, 8(12) : e85022.
  • 3Dong Y, Zhang N, Lu JH, et al. Improvement and optimization of the media of Saeeharomyees eerevisiae strain for high tolerance and high yield of ethanol [ J ]. African Journal of Microbiology Research, 2012, 6( 10): 2357-2366.
  • 4Zhang M, Xiao Y, Zhu RR, et al. Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high- energy pulse electron beam and protoplast fusion [ J ]. Bioprocess Biosystems Eng, 2012, 35 (9): 1455-1465.
  • 5Yoshikawa K, Tanaka T, Furusawa C, et al. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae [ J ]. FEMS Yeast Res, 2009, 9(1): 32-44.
  • 6Cao TS, Chi Z, Liu GL, et al. Expression of TPS1 Gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp W0 Enhances Trehalose Accumulation, Ethanol Tolerance, and Ethanol Production[ J ]. Mol Biotechnol, 2014, 56 ( 1 ) : 72-78.
  • 7Yang KM, Woo JM, Lee SM, et al. Improving ethanol tolerance of Saccharomyces cerevisiae by overexpressing an ATP-binding cassette efflux pump[ J]. Chem Eng Sci, 2013, 103: 74-78.
  • 8Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[ J]. Science, 2006, 314(5805) : 1565-1568.
  • 9Liu HM, Liu K, Yan M,et al. gTME for Improved Adaptation of Saccharomyces cerevisiae to Corn Cob Acid Hydrolysate[ J]. Appl Biochem Biotechnol, 2011, 164(7) : 1150-1159.
  • 10Yang J, Bae JY, Lee YM, et al. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance [ J ]. Biotechnol Bioeng, 2011, 108(8): 1776-1787.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部