期刊文献+

Al合金在碱性条件下CMP研究 被引量:3

Research of Aluminum Alloy CMP under Alkaline Condition
下载PDF
导出
摘要 Al化学机械抛光是实现28 nm高k金属栅器件集成电路的关键制程,采用田口方法设计正交实验,主要研究了碱性抛光液对Al合金抛光特性的作用。围绕抛光液组分进行实验。结果表明,有机胺碱体积分数为1.5%,螯合剂体积分数为0.5%,硅溶胶磨料体积分数为15%,活性剂体积分数为0.3%,氧化剂H2O2体积分数为1%时表面粗糙度最低,同时抛光液组分中活性剂体积分数在化学机械抛光过程中对Al合金表面粗糙度影响最为显著。通过优化抛光液组分配比,化学机械抛光后Al合金表面粗糙度可降到1.81 nm(10μm×10μm)。在最佳配比,即pH值为10.51时的抛光液与传统三酸抛光液进行对比实验,Al表面粗糙度明显低于传统三酸抛光液,抛光后Al表面无划伤、无蚀坑,达到了较好的抛光效果。 Aluminum chemical mechanical polishing (CMP) is the key process to achieve the 28 nm high-k metal gate device integrates. Using Taguchi method to design the orthogonal experiment, the role of alkaline slurry on aluminum polishing characteristic was mainly studied. The result shows that when the volume fraction of alkali organic amine is 1.5% , the volume fraction of chelating agent is 0.5% , the volume fraction of silica abrasive is 15% , the volume fraction of active agent is 0. 3% , the volume fraction of oxidant H2 02 is 1% , the surface roughness is the lowest. At the same time, the volume fraction of the surfactant in the polishing slurry significantly affects the surface micro roughness aluminum alloy during the CMP. By optimizing the polishing slurry ratio of composition, the surface micro roughness of aluminum alloy can efficiently down to 1.81 nm ( 10μm×10μm) post CMP. In the best proportion the pH value of polishing slurry is 10.51, compared with traditional three-acid-type polishing slurry, the surface micro roughness of aluminum is lower than the traditional three-acid-type polishing slurry, and after the CMP a good polishing effect of aluminum with no scratches and no corrosion pit is achieved.
出处 《半导体技术》 CAS CSCD 北大核心 2013年第12期929-933,共5页 Semiconductor Technology
基金 国家中长期科技发展规划02科技重大专项资助项目(2009ZX02308)
关键词 AL合金 抛光液 化学机械抛光 粗糙度 活性剂 aluminum alloy slurry chemical mechanical polishing (CMP) roughness surfactant
  • 相关文献

参考文献10

  • 1JIANG Y, SMITH J R, EVANS A G. Activity coefficients tor dilute solid solutions of AI in Ni [ J ]. Scripta Materialia, 2006, 55 (12): 1147-1150.
  • 2ZHAO S, WOLFE D A, HUANG T S, et al. Generalizedmodel for IGC growth in aluminmn alloys [J]. Journal of Statistical Planning and Inference, 2007, 137(7): 2405 -2412.
  • 3WEI-TSU T, WANG Y L, JAMES N, et al. Microstructure-related resistivity change after chemical- meehanical polish of AI and W thin films [ J ]. Thin Solid Films, 2000, 370 (1/2): 96-100.
  • 4韩丽丽,刘玉岭,牛新环.碱性条件下铝CMP的机理分析及实验优化[J].微纳电子技术,2012,49(4):280-284. 被引量:8
  • 5狄卫国,刘玉岭,司田华.ULSI硅衬底的化学机械抛光技术[J].半导体技术,2002,27(7):18-22. 被引量:15
  • 6吴国波.金属材料的腐蚀与防腐措施研究.科海故事博览,2009,(6):207-207.
  • 7陈景,刘玉岭,王立发,武亚红,马振国.铝合金CMP技术分析研究[J].微纳电子技术,2007,44(11):1017-1020. 被引量:6
  • 8杨振海,徐宁,邱竹贤.铝的电位-pH图及铝腐蚀曲线的测定[J].东北大学学报(自然科学版),2000,21(4):401-403. 被引量:34
  • 9Intercomparison of thermodynamic databases geological survey of Japan open file report. Atlas of Eh-pH diagrams [R]. Japan: National Institute of Advanced Industrial Science and Technology Research Center for Deep Geological Environments Naoto TAKENO, 2005. 142 - 143.
  • 10田口玄一.实验设计法[M].北京:机械工业出版社,1984.

二级参考文献33

  • 1童志义.化学机械抛光技术现状与发展趋势[J].电子工业专用设备,2004,33(6):1-6. 被引量:10
  • 2徐进,雒建斌,路新春,张朝辉,潘国顺.超精密表面抛光材料去除机理研究进展[J].科学通报,2004,49(17):1700-1705. 被引量:23
  • 3李薇薇,刘玉岭,檀柏梅,周建伟,王娟.利用表面活性剂有效去除ULSI衬底硅片表面吸附颗粒[J].电子器件,2005,28(2):283-285. 被引量:3
  • 4施为得 陈宝印 等.硅单晶片的SiO2抛光[J].半导体技术,1984,(2):26-27.
  • 5刘锡洹.化工百科全书(第三卷)[M].北京:化学工业出版社,1995..
  • 6《电子工业技术手册》编委会.电子工业技术手册[M].国防工业出版社,1989,6..
  • 7沈苗根.ECL亚毫微妙电路衬底制备中的一些问题[J].半导体技术,1980,(6):1-5.
  • 8HSIEH D B,TSAI T C,HUANG S F,et al.Characteriza-tion of high-k/metal gate using picosecond ultrasonics[J].Mi-croelectronic Engineerig,2011,88(5):583-588.
  • 9HSIEH Y H,HSU H K,TSAI T C,et al.Process develop-ment of high-k metal gate aluminum CMP at 28 nm technologynode[EB/OL].(2011-04-13)[2011-9-25].http://www.citeulike.org/article/9372039.
  • 10PAUL F.先进CMOS晶体管之金属栅极整合化CMP制程[EB/OL].(2011-06-28)[2011-9-25].http://www.Solid statechina.com/Dezzgy.asp?id=66.

共引文献60

同被引文献26

  • 1梅燕,韩业斌,聂祚仁.用于超精密硅晶片表面的化学机械抛光(CMP)技术研究[J].润滑与密封,2006,31(9):206-212. 被引量:17
  • 2陈景,刘玉岭,王立发,武亚红,马振国.铝合金CMP技术分析研究[J].微纳电子技术,2007,44(11):1017-1020. 被引量:6
  • 3宋晓岚,李宇焜,江楠,屈一新,邱冠周.化学机械抛光技术研究进展[J].化工进展,2008,27(1):26-31. 被引量:47
  • 4HSIEN Y H,HSU H K,TSAI T C,et al.Process development of high-k metal gate aluminum CMP at 28 nm technology node[C]//Proceedings of the 27th Annual Advanced Metallization Conference.Albany,New York,USA,2010:19-23.
  • 5HUANG R P,TSAI T C,LIN W,et al.Investigation of aluminum film properties and microstructure for replacement metal gate application[J]//Proceedings of the 20thIEEE International Interconnect Technology Conference.Dresden,Germany,2013,106:56-62.
  • 6HSU H K,TSAI T C,HSU C W,et al.Defect reduction of replacement metal gate aluminum chemical mechanical planarization at 28 nm technology node[J].Microelectronic Engineering,2013,112(s1):121-125.
  • 7Cabot Microelectronics Corporation.High k and metal gate CMP applications[R].Shanghai:Shanghai Cabot Chemical Co.,Ltd.,2010.
  • 8ZHANG J S,KLASKY M,LETELLIER B C.The aluminum chemistry and corrosion in alkaline solutions[J].Journal of Nuclear Materials,2009,384(2):175-189.
  • 9LIU X Y,LIU Y L,LIANG Y.Effect of slurry components on chemical mechanical polishing of copper at low down pressure and a chemical kinetics model[J].Thin Solid Films,2011,520(1):400-403.
  • 10PAN G, GONG H, GU Z, et al. Investigation on defect control for final chemical mechanical polishing of aluminum alloy [ J ]. Pro- ceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228(10) : 1151 - 1158.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部