期刊文献+

基于Vine Copula的中国股市风格资产相依结构特征及组合风险测度研究 被引量:7

An Empirical Study on Dependency Structure and Risk Measure of Style Portfolio in Chinese Stock Market Based on Vine Copula Model
原文传递
导出
摘要 本文首先采用AR(1)-GJR(1,1)-SkT(v,λ)模型来刻画中国股市风格资产(大盘成长、大盘价值、中盘成长、中盘价值、小盘成长、小盘价值)的边缘分布,接着结合各边缘分布的残差系列,针对传统二元Copula函数面临的"维度诅咒"问题及多元Copula函数在刻画多变量联合分布时缺乏灵活性和精确性等局限,重点引入C-Vine Copula和D-Vine Copula函数来分析这六种风格资产之间的相依结构和联合分布,然后通过拟合效果比较选出最佳Vine Copula模型,运用蒙特卡洛模拟方法预测风格资产组合的VaR,最后通过Kupiec和Christoffersen返回检验方法测试其预测效果。研究结果表明:中国股市各风格资产之间的相依性存在结构性差异,最适合用D-Vine Copula模型来刻画各风格资产之间的相依结构。总体上来看,同类型的风格资产之间的相依程度比不同类型之间的相依程度要高;在同一类型的风格资产中,资产规模差距越大的风格资产之间的相依系数就越小。无条件的风格资产收益系列之间的相关性要显著大于有条件的风格资产收益系列之间的相关性;基于Student-t Copula、Clayton-Gumbel Copula具有尾部分布特征的Copula作为构建模块的D-Vine Copula模型能够有效地预测中国股市风格资产组合的VaR,有利于提升投资组合的风险管理能力。 In this paper, we firstly describe the marginal distribution of style assets in Chinese stock market based on AR( 1 ) -GJR( 1,1 ) -SkT( u,λ ) model. The kind of style assets in this analysis include large-cap growth, large-cap value, median-cap growth, median-cap value, small cap growth and small-cap value. And then, we introduce C-Vine Copula and D-Vine Copula functions to analyze the inter-dependence of these style assets under the condition that traditional bivariate Copula faces the problem of "dimensional curse" and muhi- variate Copula functions lack precision and flexibility in characterizing the multivariate joint distribution. Finally, we make a comprehen- sive comparison between C-Vine Copula and D-Vine Copula model according to their fitting effect in order to select the best Vine Copula. The VaR of the style portfolio is calculated by Monte Carlo method and the VaR forecast efficiency of Vine Copula model is baektested through Kupiec and Christoffersen backtesting. The result shows that in Chinese stock market the inter-dependence of these style assets are of structural differences, which can be best depicted by D-Vine Copula model. On the whole, the dependence between the same kind of style assets is larger than that between different kinds of style assets. Among the same kind of style assets, the greater gap in size of style assets, the less dependent they are of each other. Unconditional dependence is larger than that of the conditional dependence among Vine Copula model. The D-Vine Copula, which passes the backtesting, can effectively predict VaR of style portfolio in Chinese stock market, and therefore is useful to the risk management.
作者 郭文伟 钟明
出处 《管理评论》 CSSCI 北大核心 2013年第11期41-52,共12页 Management Review
基金 国家社会科学基金项目(12CJY006) 广东省自然科学基金项目(S2012040008073) 广州科技计划项目(2013Y4300023) 教育部人文社会科学研究项目(13YJC790150)
关键词 股市风格资产 市场风险 VINE COPULA VAR style portfolio in stock market, market risk, vine copula, VaR
  • 相关文献

参考文献25

  • 1Sklar A. Fonctionde Repartition a Dimension Stleurs Marges [ J ]. Publ, Inst, Stat, Univ, Paris, 1959, (8) : 229-231.
  • 2Bedford T., Cooke R. M. Vines-a New Graphical Model for Dependent Random Variables [ J ]. Annals of Statics, 2002,30 (4) : 1031-1068.
  • 3Aas K., Czado C., Frigessi A. Pair-Copula Constructions of Multiple Dependence [J]. Insurance: Mathemaucs anu Economics, 2009,44:182-198.
  • 4Czado C., Schepsmerier U., Min A. Maximum Likelihood Estimation of Mixed C-vines with Application to Exchange Rates [ J ]. Statistical Modelling, 2012,12(3) :229-255.
  • 5Fischer M., Kock C., Schluter S., Weigert F. An Empirical Analysis of Multivariate Copula Models [ J ]. Quantitative Finance, 2009,9(7) :839-854.
  • 6Min A., Cazdo C. Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions [ J ]. Journal of Financial Econom- ics, 2010,8(4) :511-546.
  • 7Beatriz M., Semeraro M., Leal R. Pair-Copulas Modeling in Finance[ J]. Financial Market Portfolio Management, 2010,24:193- 213.
  • 8Daniel S., Claudia C., Sabine H., Fabian J. T. A Vine-Copula Based Adaptive MCMC Sampler for Efficient Inference of Dynami- cal Systems[ J]. Bayesian Analysis, 2013,8( 1 ) : 1-22.
  • 9Aristidis K. N., Harry J., Haijun L. Vine Copulas with Asymmetric Tail Dependence and Applications to Financial Return Data [ J ]. Computational Statistics & Data Analysis, 2012,56(11) :3659-3673.
  • 10Rand K. Y. L., Jamie A., Robert F., Timothy B. Canonical Vine Copulas in the Context of Modem Portfolio Management : Are They Worth It? [ J ]. Journal of Banking & Finance, 2013,37 (8) : 3085-3099.

二级参考文献114

共引文献138

同被引文献89

  • 1韩非,肖辉.中美股市间的联动性分析[J].金融研究,2005(11):117-129. 被引量:157
  • 2韦艳华,张世英.多元Copula-GARCH模型及其在金融风险分析上的应用[J].数理统计与管理,2007,26(3):432-439. 被引量:71
  • 3战雪丽,张世英.基于Copula-SV模型的金融投资组合风险分析[J].系统管理学报,2007,16(3):302-306. 被引量:29
  • 4Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. InternationalEconomic Review, 1998, 39(4): 885-905.
  • 5Hasbrouck J. Empirical Market Microstructure: The Institutions, Economics and Econometrics of Securities Trading. New York:Oxford University Press, 2007: 31-41.
  • 6Hansen P R,Lunde A. A forecast comparison of volatility models: Does anything beat a GARCH(1, 1). Journal of Applied Econo-metrics, 2005, 20(7): 873-889.
  • 7Bandi F M, Russell J R. Microstructure noise, realized variance, and optimal sampling. Review of Economic Studies, 2008, 75(2):339-369.
  • 8Bamdorff-Nielsen O E, Hansen P R, Lunde A, et al. Designing realized kernels to measure the ex post variation of equity prices inthe presence of noise. Econometrica, 2008,76(6): 1481-1536.
  • 9Hansen P R, Huang Z,Shek H H. Realized GARCH: A joint model for returns and realized measures of volatility. Journal of AppliedEconometrics, 2012, 27(6): 877-906.
  • 10Watanabe T. Quantile forecasts of financial returns using realized GARCH models. Japanese Economic Review, 2012,63(1): 68-80.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部