期刊文献+

锂离子电池浮充测试的鼓胀原因分析及改善 被引量:16

Study on cause of swelling in float-charged lithium ion batteries
下载PDF
导出
摘要 对浮充测试中发生鼓胀的锂离子电池进行了深入分析,对电池产气成分、正负极阻抗、晶体结构、隔膜形貌及孔隙等情况进行了检测,结果表明:在浮充过程中,溶剂及添加剂在嵌锂负极表面发生还原反应,同时SEI膜发生不断的重整及修复反应,这些反应产物沉积到负极表面及隔膜孔隙内,导致靠近负极面的隔膜孔隙堵塞甚至贯穿,一旦沉积物刺穿隔膜,即引起正负极微短路,导致SEI膜的溶解和溶剂的氧化,释放出大量CO2,电池厚度迅速鼓胀。通过更换Gurley值高的隔膜可显著改善电池的浮充性能,原因在于在发生相同程度副反应的情况下,Gurley值高的隔膜可穿透性差,不易被沉积物刺穿发生微短路。 The swelling lithium ion batteries in float-charged test were studied by analyzing the state of each component in battery. The experimental results suggest that the solvents reduction and the SEI reforming and repairing reaction may be caused by the float-charging process. The reaction products deposited on the anode surface and penetrated into the micro pores of separator on anode side. And it is easy to cause a short circuit of cathode and anode, which will lead to the release of CO2 by the dissolution of SEI and oxidation of solvents. According to this, if the separator changed to one with lower Gurley value, the swelling rate of battery would be greatly reduced.
出处 《电源技术》 CAS CSCD 北大核心 2013年第12期2123-2126,共4页 Chinese Journal of Power Sources
关键词 锂离子电池 浮充 鼓胀 lithium ion battery float-charge swelling
  • 相关文献

参考文献5

二级参考文献84

  • 1孙占辉,王瑜,孙金华.有机过氧化物的热自燃性小药量评价法[J].应用化学,2005,22(1):1-4. 被引量:15
  • 2王青松,孙金华,陈思凝,姚晓林,陈春华.锂离子电池热安全性的研究进展[J].电池,2005,35(3):240-241. 被引量:39
  • 3王青松,孙金华,姚晓林,陈春华.Li_xCoO_2及其与LiPF_6EC+DEC电解液的热稳定性研究[J].化学通报,2006,69(1):20-25. 被引量:2
  • 4SHIN Jee-sun, HAN Chi-hwan, JUNG Un-ho, et al. Effect of Li2CO3 additive on gas generation in lithium-ion batteries [J]. Journal of Power Sources, 2002,109 : 47--52.
  • 5McBreen J,Lee H S,Yang X Q. Synthesis of a new family of fluorinated boronate compounds as anion receptors and studies of their use as additives in lithium battery electrolytes [A]. Proceedings on China International Battery Fair [C]. Beijing: Chinese Jou
  • 6Lee H S,Yang X Q,Xiang C L,et al. The sythesis of a new family of boron - based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solution[J] . J Electrochem Soc, 1998,145(8):2 813 -2 81
  • 7Wang, Yasukawa X E, Kisuya S. Nonflammable trimethyl phosphate solvent- containing electrolytes for lithium- ion batteries: Ⅱ. The use of an amorphous carbon anode[J] . J Electrochem Soc, 2001, 148(10): A1 066 -A1 071.
  • 8Richard M N, Dahn J R, Predicting electrical and thermal abuse behaviours of practical lithium- ion cells from accelerating rate calorimeter studies on small samples in electrolyte [J]. J Power Sources, 1999, 79:135 - 142.
  • 9Arai H, Tsuda M, Saito K, et al. Thermal reactions between delithiated lithium nickelate and electrolyte solutions[J] . J Electrochem Soc, 2002, 149: A 401 - A 406.
  • 10Zhang Z,Fouchard D,Rea J R. Differential scanning calorimetry material studies: implications for the safety of Li - ion cells [J]. J Power Sources, 1998, 70:16 -20.

共引文献91

同被引文献64

引证文献16

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部