期刊文献+

桥梁自激力脉冲响应函数及颤振时域分析 被引量:7

Impulse Response Functions of Self-excited Force and Flutter Analysis in Time Domain for Bridge
原文传递
导出
摘要 为探讨基于自激力脉冲响应函数卷积积分列式的颤振时域分析中存在的问题,使用颤振导数的有理函数近似式推导出了自激力脉冲响应函数的具体形式,建立了基于自激力脉冲响应函数的桥梁颤振运动方程并给出了2种时域求解方案,通过讨论自激力脉冲响应函数的性质解决了颤振时域分析中结构初始响应失真以及积分时间步长如何设定的问题。通过对具有理想平板断面的简支梁的颤振分析发现:结构初始响应失真的现象是自激力中非线性卷积积分项的初始条件未知造成的,通过限定与自激力非定常特性相关的气动系数的下限可以有效解决该问题;时间积分步长会影响到基于自激力递推列式的颤振分析结果的精度,可以根据自激力时域模型中气动力系数及桥梁结构颤振形态估算所需的时步。 In order to explore the problems in time-domain flutter analysis based on the formulation of self-excited forces expressed in terms of convolution integrals of impulse response function, governing equation of bridge flutter was established based on this impulse response function. Two solution schemes for this governing equation were also proposed. The critical issues in time-domain flutter analysis, such as how to reduce initial response distortion and how to set integral time step, were cleared up by analyzing the characteristics of impulse response function of self-excited force. Flutter analysis of a simply supported beam with idealized thin plane section adopting the two procedures was provided. The results show that the distortion of initial response is caused by the unknown initial conditions of nonlinear convolution integral terms of self-excited force, which can be avoided by restricting the lower limit of the aerodynamic coefficients related to the unsteady property of self-excited force, and integral time step may affect precision of flutter analysis results based on recursive formula of self-excited force, which can be evaluated by aerodynamic coefficients and flutter mode shape of the bridge.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2013年第6期103-109,共7页 China Journal of Highway and Transport
基金 国家重点基础研究发展计划("九七三"计划)项目(2013CB036301) 国家自然科学基金项目(51178353 91215302)
关键词 桥梁工程 自激力 理论推导 颤振 脉冲响应函数 状态空间 bridge engineering self-exited force theoretical deduction flutter impulse responsefunction state-space
  • 相关文献

参考文献12

  • 1SCANLAN R H. Reexamination of Sectional Aerody- namic Force Functions for Bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001,89(14/15) : 1257-1266.
  • 2GE Y J,TANAKA H. Aerodynamic Flutter Analysis of Cable-supported Bridges by Multi-mode and Full- mode Approaches [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86 ( 2/3 ) : 123- 153.
  • 3HUA X G, CHEN Z Q. Full-order and Multimode Flutter Analysis Using ANSYS[J]. Journal of Finite Elements in Analysis and Design, 2008, 44 (9/10): 537-551.
  • 4MATSUMOTO M, MATSUMIYA H, FUJIWARA S, et al. New Consideration on Flutter Properties Based on Step-by-step Analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98 (8/9) :429-437.
  • 5KAREEM A, WU T. Wind Induced Effects on Bluff Bodies in Turbulent Flows: Nonstationary, Non-gaussian and Nonlinear Features[M]/XlANG H F,GE Y J, CAO S Y. Proceedings of the 7th International Collo- quium on Bluff Body Aerodynamics and Its Applica tions (BBAAT). Beijing : China Communications Audi- o-visual ~ Electronic Press, 2012 : 56-79.
  • 6SALVATORI L,BORRI C. Frequency- and Time-do- main Methods for the Numerical Modeling of Full- bridge Aeroelasticity [Jl. Journal of Computers Structures, 2007,85 (11/12/13/14) : 675-687.
  • 7CHEN X Z, KAREEM A. Advances in Modeling of Aerodynamic Forces on Bridge Decks[J]. Journal of Engineering Mechanics, 2002,128 ( 11 ) : 1193-1205.
  • 8STAROSSEK U. Complex Notation in Flutter Analy- sis[J]. Journal of Structural Engineering, 1998, 124 (8) :975-977.
  • 9CARACOGLIA L,JONES N. A Methodology for the Experimental Extraction of Indicial Functions for Streamlined and Bluff Deck Sections[J] Journal of Wind Engineering and Industrial Aerodynamics, 2003,91(5) :609-636.
  • 10CHOWDHURY A G, SARKAR P P. Experimental Identification of Rational Function Coefficients for Time-domain Flutter Analysis [J]. Journal of Engi- neering Structures,2005,27(9) : 1349-1364.

二级参考文献6

共引文献509

同被引文献58

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部