期刊文献+

去除椒盐噪声的交替方向法 被引量:12

Alternating Direction Method for Salt-and-pepper Denoising
下载PDF
导出
摘要 传统图像去噪法基于有用信息和噪声频率特性的差别实现去噪,实际中,有用信息和噪声在频带上往往存在重叠,因此,传统去噪法在抑制噪声的同时,往往损失了细节信息,使图像变模糊.本文引入稀疏与低秩矩阵分解模型描述图像去噪问题,基于该模型,采用交替方向法(Alternating direction method,ADM)得到复原图像.实验证明该方法比常用的中值滤波法更有效地抑制了椒盐噪声,同时更好地保持了原始图像的细节信息. Conventional image denoising algorithms attempt to remove noise on the basis of spectral separation between signal and noise. However, in practice, the spectra of signal and noise usually overlap. As a result, conventional denoising algorithms often suppress noises at the cost of losing details in fine texture and causing blurring in output images. This paper formulates the image denoising problem by adopting a new model of sparse and low-rank matrix decomposition. Based on this model, the alternating direction method (ADM) is utilized to obtain the restored image. Our experiment demonstrates that the ADM suppresses salt-and-pepper noise more efficiently and better preserves detail information in the input image, as compared to the commonly used median filtering method.
出处 《自动化学报》 EI CSCD 北大核心 2013年第12期2071-2076,共6页 Acta Automatica Sinica
基金 国家自然科学基金(61102097,61102096) 天津市科技支撑计划项目(11ZCGHHZ00700) 天津市自然科学基金(11JCYBJC06900)资助~~
关键词 图像去噪 凸优化 L1范数 核范数 交替方向法 Image denoising, convex optimization, l1-norm, nuclear norm, alternating direction method (ADM)
  • 相关文献

参考文献2

二级参考文献24

  • 1邹海林,隋亚莉,徐俊艳,宁书年.基于多小波变换的GPR图象去噪方法研究[J].系统仿真学报,2005,17(4):855-858. 被引量:16
  • 2郁梅,易文娟,蒋刚毅.基于Contourlet变换尺度间相关的图像去噪[J].光电工程,2006,33(6):73-77. 被引量:30
  • 3李迎春,孙继平,付兴建.基于小波变换的红外图像去噪[J].激光与红外,2006,36(10):988-991. 被引量:33
  • 4Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
  • 5Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistic Association, 1995, 90(432): 1200-1224.
  • 6Donoho D L, Johnstone I M, Kerkyacharian G, Picard D. Wavelet shrinkage: asymptopia? Journal of Royal Statistical Society Series B, 1995, 57(2): 301-369.
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425-455.
  • 8Xu Y S, Weaver J B, Healy D M, Lu J. Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Transactions on Image Processing, 1994, 3(6): 747-758.
  • 9Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans.on Signal Processing,1993,41(12):3397-3415.
  • 10Bergeau F,Mallat S.Matching pursuit of images[C]//Proceedings of IEEE-SP,Piladelphia,1994.

共引文献93

同被引文献74

  • 1赵瑞珍,刘晓宇,LI ChingChung,SCLABASSI Robert J,孙民贵.基于稀疏表示的小波去噪[J].中国科学:信息科学,2010,40(1):33-40. 被引量:25
  • 2高庆吉,胡丹丹,牛国臣,邢志伟.基于磁光图像的飞机铆钉缺陷识别[J].中国图象图形学报,2007,12(12):2179-2183. 被引量:7
  • 3Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 60-65.
  • 4Easley G R, Labate D, Colonna F. Shearlet based total vari- ation for denoising. IEEE :l:'ansactions on hnage Processing, 2009, 16(2): 260-268.
  • 5Huang D A, Kang L W, Wang Y C, Lin C W. Self-learning based image decomposition with applications to single image denoising. IEEE Ti'ansactions on Multimedia, 2014, 16(1): 83-93.
  • 6Mahmoudi M, Sapiro G. Fast image and video denoising via non-locM means of similar neighborhoods. IEEE Signal Pro- cessing Lett:,rs, 2005, 12(12): 839-842.
  • 7Yan R M, Shao L, Cvetkovic S D, Klijn J. Improved nonloca.I means based on pre-classification and invariant block match- ing. Journal of Display Technology, 2012, 8(4): 212-218.
  • 8Zhang X D, Feng X C, Wang W W. Two-direction nonlo- cal model for image denoising. IEEE Transactions on hnage Processing, 2013, 22(1): 408-412.
  • 9Elad M, Aharon M. Image denoising via sparse and redun- dant representations over learned dictionaries. IEEE Trans- actions on Image Processing, 2006, 15(12): 3736-3745.
  • 10Dabov K, Foi A, Katkovnik V, Egiazarian K. hnage de- noising by sparse 3-D transform-domain collaborative filter- ing. IEEE Transactions on hnage Processing, 2007, 16(8): 2080-2095.

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部