期刊文献+

基于支持向量机回归的T-S模糊模型自组织算法及应用 被引量:11

A Self-organizing Algorithm for T-S Fuzzy Model Based on Support Vector Machine Regression and Its Application
下载PDF
导出
摘要 结合模糊聚类算法和支持向量机回归算法提出了一种新的T-S模糊模型自组织算法.该算法首先利用一种改进模糊聚类算法提取模糊规则和辨识前件参数,然后将T-S模糊模型后件变换为标准线性支持向量机回归模型,并利用支持向量机回归算法辨识后件参数.仿真结果表明,相比现有的自组织算法,本文提出的T-S模糊模型自组织算法在规则数较少的情况下,仍然具有较高的辨识精度和较好的泛化能力.最后,利用提出的T-S模糊模型自组织算法较好地建立了直拉硅单晶炉加热器和空气预热器的温度模型. A new self-organizing algorithm for T-S fuzzy model is proposed by combining the fuzzy clustering algorithm and the support vector machine (SVM) regression algorithm. This algorithm firstly uses an improved fuzzy clustering algo= rithm to extract fuzzy rules and identify antecedent parame- ters. Then the T-S fuzzy model consequent is transformed into a standard linear support vector machine regression model, thus its parameters are identified using the support vector machine regression algorithm. Simulation results show that the self- organizing algorithm for T-S fuzzy model in this paper still has higher approximation accuracy and better generalization ability in the case of a small number of rules compared with the ex- isting self-organizing algorithm. Finally, a heater temperature model of Czochralski single crystal furnace and an air preheater temperature model are better established using the proposed self-organizing algorithm for T-S fuzzy model.
出处 《自动化学报》 EI CSCD 北大核心 2013年第12期2143-2149,共7页 Acta Automatica Sinica
基金 国家自然科学基金(61203114) 陕西省自然科学基金(2013JM8029)资助~~
关键词 T—S模糊模型 支持向量机回归 聚类 单晶炉 空气预热器 T-S fuzzy model, support vector machine regres-sion, clustering, single crystal furnace, air preheater
  • 相关文献

参考文献6

二级参考文献73

  • 1刘辉,张吉礼,孙德兴.规则双阶段提取自组织模糊控制方法[J].哈尔滨工业大学学报,2005,37(9):1189-1191. 被引量:5
  • 2刘辉,张吉礼,孙德兴.实验台送风温度规则自校正模糊控制研究[J].暖通空调,2005,35(12):97-99. 被引量:1
  • 3王高平,王永骥.改进的多目标遗传算法在营养决策中应用[J].计算机工程与应用,2007,43(4):198-200. 被引量:7
  • 4MAMDANI E H. Application of fuzzy algorithm for simple dynamic plant [J]. Proceedings of IEEE, 1974, 121(12) :1585-1588.
  • 5TOBI T, HANAFUSA T. A practical application of fuzzy control for an air-conditioning system [J]. International Journal of Approximate Reasoning,1991, 5(3):331-348.
  • 6PEDRYCZ W. Fuzzy Control and Fuzzy Systems [M]. 2nd Ed. New York :Wiley, 1993.
  • 7TAKAGI T, SUGENO M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1):116-132.
  • 8GHIAUS C. Fuzzy model and control of a fan-coil [J]. Energy and Buildings, 2001, 33(6) :545-551.
  • 9HE Ming, CAI Wen-jian , LI Shao-yuan. Multiple fuzzy model-based temperature predictive control for HVAC systems [J]. Information Sciences, 2005, 169:155-174.
  • 10JANG J R. ANFIS adaptive-network-based fuzzy inference system [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3):665-685.

共引文献44

同被引文献135

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部