摘要
结合模糊聚类算法和支持向量机回归算法提出了一种新的T-S模糊模型自组织算法.该算法首先利用一种改进模糊聚类算法提取模糊规则和辨识前件参数,然后将T-S模糊模型后件变换为标准线性支持向量机回归模型,并利用支持向量机回归算法辨识后件参数.仿真结果表明,相比现有的自组织算法,本文提出的T-S模糊模型自组织算法在规则数较少的情况下,仍然具有较高的辨识精度和较好的泛化能力.最后,利用提出的T-S模糊模型自组织算法较好地建立了直拉硅单晶炉加热器和空气预热器的温度模型.
A new self-organizing algorithm for T-S fuzzy model is proposed by combining the fuzzy clustering algorithm and the support vector machine (SVM) regression algorithm. This algorithm firstly uses an improved fuzzy clustering algo= rithm to extract fuzzy rules and identify antecedent parame- ters. Then the T-S fuzzy model consequent is transformed into a standard linear support vector machine regression model, thus its parameters are identified using the support vector machine regression algorithm. Simulation results show that the self- organizing algorithm for T-S fuzzy model in this paper still has higher approximation accuracy and better generalization ability in the case of a small number of rules compared with the ex- isting self-organizing algorithm. Finally, a heater temperature model of Czochralski single crystal furnace and an air preheater temperature model are better established using the proposed self-organizing algorithm for T-S fuzzy model.
出处
《自动化学报》
EI
CSCD
北大核心
2013年第12期2143-2149,共7页
Acta Automatica Sinica
基金
国家自然科学基金(61203114)
陕西省自然科学基金(2013JM8029)资助~~
关键词
T—S模糊模型
支持向量机回归
聚类
单晶炉
空气预热器
T-S fuzzy model, support vector machine regres-sion, clustering, single crystal furnace, air preheater