期刊文献+

有限字符约束下的MIMO信道线性预编码设计 被引量:6

Linear precoding design for MIMO channels with finite alphabet constraints
下载PDF
导出
摘要 考虑到实际通信系统中的信道输入是有限字符输入,研究了有限字符输入约束下的预编码矩阵的设计和优化问题,而且以最大化多输入多输出(MIMO)系统的互信息量为目标函数,提出了一种有限字符约束情况下的预编码矩阵设计方案。该方案将预编码矩阵优化问题转化为功率分配矩阵设计和右预编码矩阵设计两个子问题。对于功率分配问题,考虑到是一个凸优化问题,利用经典的最陡下降算法进行迭代优化;对于右奇异值优化问题,考虑到是一个具有酉矩阵约束的优化问题,将该问题转化为黎曼几何上的无约束的优化问题,通过酉矩阵的李群上的最陡下降算法进行求解。试验结果表明,提出的预编码设计方案具有很好的性能,而且收敛速度较快。 Considering that the channel input of a practical communication system is finitealphabetic, the design and op timization of precoding matrixes were studied under the finite alphabet input, and a scheme for precoding metrix de sign was proposed by taking the maximized mutual information of a multiple input and multiple output (MIMO) sys tem as an objective function. The scheme translates the problem of precoding matrix design into two sub problems of designing the power allocation matrix and the right unitary matrix. The first problem is a convex optimization prob lem and it can be solved by the classical steepest descent algorithm. The second problem is a unitarymatrix con strained optimization problem, and it can be translated into a problem without constraints in the Riemannian geome try. Consequently, it can be solved by the steepest descent (SD) algorithms on the Lie group of unitary matrices. The simulation results show that the proposed algorithm has the good performance and the high speed in convergences.
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第11期1117-1123,共7页 Chinese High Technology Letters
基金 973计划(2012CB315802) 工业和信息化部重大专项(2010ZX03003003-01 2012ZX03001007-004) 北京市自然科学基金重大项目(4110001)资助项目
关键词 互信息量 多输入多输出(MIMO) 预编码矩阵 梯度下降 黎曼几何 mutual information, multiple input and multiple output ( MIMO), precoding matrix, gradient de-scent, Riemannian geometry
  • 相关文献

参考文献26

  • 1Telatar. Capacity of multi-antenna Gaussian channels. Eu- ropean Transactions on Telecommunications, 1999,10 ( 6 ) : 585-595.
  • 2Zhou Y, Ng T S. Performance analysis on MIMO-OFCDM systems with Multi-code Transmission. IEEE Transactions on Wireless Communications, 2009,8 ( 9 ) :4426-4433.
  • 3Zhou Y,Ng T S. MIMO-OFCDM Systems with Joint hera- tive Detection and Optimal Power Allocation. IEEE Trans- actions on Wireless Communications, 2008,7 ( 12 ) : 5504- 5516.
  • 4Vu M. , Paulraj A. MIMO wireless linear precoding. IEEE signal processing magazine,2007,24 (5) : 86-105,.
  • 5Scaglione A, Stoica P, Barbarossa S, et al. Optimal designs for space-time linear precoders and decoders. IEEE Trans- actions on Signal Processing ,2002,50 (5) :1051-1064.
  • 6Su Y, Tang S, Shi J, et al. Robust Downlink Precoding in Muhiuser MIMO-OFDM Systems with Time-Domain Quantized Feedback. In:Proceedings of IEEE Wireless Communications & Networking Conference ( WCNC ) , Sydney, Australia, 2010.1-5.
  • 7Gershman A B, Sidiropoulos N D, Shahbazpanahi S, et al. Convex optimization-based beamforming: from receive to transmit and network designs. IEEE Signal Processing Magazine, 2010,27 ( 3 ) : 62 -75.
  • 8Guo D, Shamai (Shitz) S, Verd6 S. Mutual information and minimum mean-square error in Gaussian channels. IEEE Transaction on Information Theory, 2005,51 (4) : 1261- 1282.
  • 9Lozano A,Tulino A M, and Verdu S. Optimum power allo- cation for parallel Gaussian channels with arbitrary input distributions. IEEE Transaction on Information Theory, 2006,52 (7) : 3033-3051.
  • 10Xiao C. and Zheng Y R. On the mutual information and power allocation for vector Gaussian channels with finite discrete inputs. In:Proceedings of the 2008 IEEE Global Communications Conference, New Orleans, USA, 2008. 1-5.

共引文献1

同被引文献18

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部