期刊文献+

基于局部直觉模糊熵的偏微分图像降噪算法 被引量:2

Image denoising of PDE based on local intuitionistic fuzzy entropy
下载PDF
导出
摘要 针对传统P-M扩散模型不能分辨梯度变化相近的平坦区和细节区的不足,提出一种新的扩散模型。该模型将局部直觉模糊熵引入扩散函数,结合梯度共同控制扩散过程,使得梯度较大的边缘区获得较小的扩散系数而保留边缘特征,对于梯度较小且相近的区域,由于细节区的局部直觉模糊熵值往往大于平坦区的局部直觉模糊熵值而获得较小扩散系数保留细节特征,弥补了传统扩散模型模糊细节特征的缺点。实验结果表明,与传统模型相比较,新模型细节信息保留的更加完整,噪声去除的更干净,视觉和量化效果均很优异。 A new model is proposed to overcome the problem in conventional P-M diffusion model that the flat areas and the detail areas with similar spatial gradient were unable to be distinguished. In the proposed model, the local intuitionistic fuzzy entropy is introduced into partial differential equation, controlling the diffusion process with the gradient together. So, the edges with bigger gradient acquire smaller diffusion coefficients and get edge-preserved, for the small gradient and similar areas, the local intuitionistie fuzzy entropies of detail areas are bigger than these of flat areas, thus these areas have small diffusion coefficients and maintain detail feature, making up for the shortcomings of traditional diffusion model that detail characteristics are always blurred. Experimental results indicate that the new algorithm can preserve more detail features and less noise than traditional models, and acquire excellent visual and quantitative effects.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第12期4256-4260,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61071192 61271357 61171178) 山西省国际合作基金项目(2013081035)
关键词 图像降噪 PDE方程 直觉模糊熵 扩散系数 局部信噪比 image denoising partial differential equation intuitionistic fuzzy entropy diffusion coefficient local SNR
  • 相关文献

参考文献8

  • 1Gllboa G,Sochen N,Zeevi Y Y.Variational denoising of partly tex-tured images by spatially varying constrains[J].IEEE Transac-tions on Image Processing,2006,15(8):2281-2289.
  • 2Mohammad Reza Hajiaboli.An anisotropic fourth-order diffu-sion filter for image noise removal[J].Int J Comput Vis,2011(92):177-191.
  • 3Jian Bai,Xiang-Chu Feng.Fractional-order anivsotropic diffusion forimage denoising[J].IEEE Transactions on Image Processing,2007,16(10):2492-2502.
  • 4杨迎春,桂志国,李化奇,李晓岩.基于分数阶导数的自适应各向异性扩散图像去噪模型[J].中北大学学报(自然科学版),2011,32(4):512-517. 被引量:4
  • 5Ioannis K Vlachos,George D Sergiadis.The role of entropy inint.uitioni.stic fuzzy contrast enhancement[J].Foundations ofFuzzy Logic and Soft Computing,2007,4529:104-113.
  • 6Tamalika Chaira.A rank ordered filter for medical image edgeenhancement and detection using intuitionistic fuzzy set[J].Applied Soft Computing,2012,12(4):1259-1266.
  • 7Shin-Min Chao,Du-Ming Tsai.An improved anisotropic diffu-sion model for detail-and edge-preserving smoothing[J].Pat-tern Recognition Letters,2010,31(13):2012-2023.
  • 8Shin-Min Chao,Du-Ming Tsai.Astronomical image restora-tion using an improved anisotropic diffusion[J].Pattern Recogni-tion letters,2006,27(5):335-344.

二级参考文献8

  • 1Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans. Pattern Anal. Machine Intell. , 1990, 12(7):629 639.
  • 2Catte F, Lion P I., Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis, 1992, 29(1): 182-193.
  • 3Alvarez L, Morel J M. Formalization and computational aspects of image analysis[J].Acta Numerica, 1994, 3: 1- 59.
  • 4You Y I., Kaveh M. Fourth-order partial differential equations for noise removal[J].IEEE Trans on Image Processing, 2000, 9(10): 1723-1729.
  • 5Mathieu B, Melchior P, Oustaloup A. et al. Fractional differendation for dege detecdon[J].Signal Processing, 2003, 83(11): 2421- 2432.
  • 6Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60: 259-268.
  • 7Bai J, Feng X C. Fractional-order asistropic diffusion for image denoising[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2492-2502.
  • 8Ling Jian, Bovik A C. Smoothing low-SNR molecular images via anisotropic median diffusion [J].IEEE Transactions on Medical Imaging, 2002, 21(4): 377- 384.

共引文献3

同被引文献30

  • 1DAI F, ZHENG N, XUE J. Image smoothing and sharpening based on nonlinear diffusion equation [ J]. Signal Processing, 2008, 88 (11) : 2850 - 2855.
  • 2BINI A A, BHAT M S. A fourth-order partial differential equation model for muhiplicative noise removal in images [ C]// Proceedings of the 2013 International Conference on Emerging Trends in Commu- nication, Control, Signal Processing and Computing Applications. Bangalore: [ s. n. ], 2013:1 -5.
  • 3BABU A, EI-SAKKA M R. A hybrid scaling factor for speckle re- ducing anisotropic diffusion [ C]// Proceedings of the 2013 8th In- ternational Symposium on Image and Signal Processing and Analysis. Trieste: [s.n.], 2013:4-9.
  • 4ZHONG J, SUN H. Wavelet-based multiseale anisotropic diffusion with adaptive statistical analysis for image restoration [ J]. IEEE Transactions on Circuits and Systems, 2008, 55(9) : 2716 - 2725.
  • 5XU R, CHEN Y W. Wavelet-based multiresolution medical image registration strategy combining mutual information with spatial infor- mation [ J]. International Journal of Innovative Computing, Informa- tion and Control, 2007, 3(2) : 285 -296.
  • 6TORRES L, SANT'ANNA S J S, da COSTA FREITAS C, et al. Speckle reduction in polarimetric SAR imagery with stochastic dis- tances and nonlocal means [ J]. Pattern Recognition, 2014,47( 1): 141 - 157.
  • 7WU K, ZHANG X, DING M. Curvelet based nonlocal means algo- rithm for image denoising [ J]. AEU-International Journal of Elec- tronics and Communitions, 2014, 68(1) : 37 -43.
  • 8CHAOS M, TSAI D M. An improved anisotropic diffusion model for detail- and edge-preserving smoothing [ J]. Pattem Recognition Letters, 2010, 31 (13) : 2012 - 2023.
  • 9YOU Y L, KAVEH M. Fourth-order partial differential equations for noise removal [ J]. IEEE Transactions on Image Processing, 2000,9(10) : 1723 - 1730.
  • 10MOHAMMAD R H. An anisotropic fourth-order diffusion filter for image noise removal [ J]. Springer Science + Business Media, 2011,92(2): 177 - 191.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部