期刊文献+

基于格贴近度的不完全文字图像模糊识别方法 被引量:2

Fuzzy identification method of incomplete text image based on grid closeness degree
下载PDF
导出
摘要 目前在对那些受污损的文字图像处理过程中存在着计算复杂、恢复效果欠佳等问题,针对这些问题,提出了一种基于格贴近度的不完全文字图像模糊识别方法。设计一种基于像素空间分布信息的点密度函数作为像素加权系数,确定像素模糊化矩阵向量,采用一种格贴近度方法对文字图像进行模糊识别。理论分析和实验结果表明,该方法不但可以较好地识别图像中的不完全文字,而且具有计算速度快、效率高,对不完全文字图像识别有一定的实用价值。 At present there is problems of the calculation complexity and the poor recovery effect in the processing of defaced text image. Aiming at the problems, a fuzzy identification method of incomplete text image based on grid closeness degree is dis cussed. Firstly the point density function based on the spatial distribution information of pixel is designed as the pixel weighting coefficient to determine the pixel fuzzy matrix vector. Then the fuzzy identification of text image is finished with a method of grid closeness degree. Theoretical analysis and experimental result shows that the method can effectively identify the incomplete text of the image and it has fast calculation speed. It has a certain practical value to the identification of incomplete text image.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第12期4326-4330,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61170102) 湖南省教育厅科研重点基金项目(12A042 11C0404) 湖南省科技计划基金项目(2013GK3043)
关键词 点密度函数 格贴近度 模糊隶属度 不完全文字图像 模糊识别 模糊矩阵 point density function grid closeness degree fuzzy membership incomplete text image fuzzy identification fuzzy matrix
  • 相关文献

参考文献14

二级参考文献83

共引文献143

同被引文献25

  • 1王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 2冯建强,刘文波,于盛林.基于灰度积分投影的人眼定位[J].计算机仿真,2005,22(4):75-76. 被引量:49
  • 3董光波,谢桂海,孙增圻.基于DSP和小波分析技术的实时噪声消除系统[J].计算机工程,2006,32(4):247-249. 被引量:4
  • 4杜干,朱雯君.基于局部奇异值分解和模糊决策的人脸识别方法[J].中国图象图形学报,2006,11(10):1456-1459. 被引量:20
  • 5Andrews H, Hunt B. Digital image restoration[M]. Upper Saddle River, NJ, USA: Prentice Hall, 1977.
  • 6Levin A, Weiss Y, Durand F, et al. Efficient marginal likelihood optimization in blind deconvolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2011: 2657-2664.
  • 7Tikhonov A N, Arsenin V Y. Solutions of Ill-posed problems[M]//Mathematics of Computation. Washington, USA: V H Winston & Sons, 1997.
  • 8Nishiyama M, Hadid A, Takeshima H, et al. Facial deblur inference using subspace analysis for recognition of blurred faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 838-845.
  • 9Hamm J, Lee D D. Grassmann discriminant analysis: A unifying view on subspace-based learning[C]//Proceedings of the International Conference on Machine Learning. Piscataway, NJ, USA: IEEE, 2008: 376-383.
  • 10Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615-1618.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部