期刊文献+

处理不平衡样本集的欠采样算法 被引量:7

Under-sampling algorithm on imbalanced dataset
下载PDF
导出
摘要 支持向量机(SVM)在处理不平衡样本集时,对少类样本的分类效果很不理想。为提高支持向量机在处理不平衡问题上的分类效果,提出了一种核函数选取与欠采样相结合的算法,在提高少类样本准确率的前提下,将多类样本的分类准确率的损失降到最低。该方法首先基于特征空间的可分性选择最佳核函数,然后根据特征距离进行欠采样。基于UCI标准样本集的仿真实验结果表明了该算法是合理有效的。 Support vector machine (SVM) is unsatisfactory in the classification performance of minority class when dealing with imbalanced dataset. To improve the classification performance of support vector machine in the issue of unbalanced sample, an algorithm combining selection of kernel function and under-sampling is presented, in the premise of increasing the accuracy of minority class, this algorithm minimizes the loss of the accuracy of majority class. The best kernel function based on separability in the feature space is selected, then the part of the majority class is deleted according to the feature distance. Simulation experiment results on UCI stander data shows that the algorithm is reasonable and effective.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第12期4345-4350,共6页 Computer Engineering and Design
基金 山东省自然科学基金项目(2009ZRB019CE)
关键词 分类 支持向量机 不平衡样本集 欠采样算法 核函数 classification support vector machine imbalanced dataset under-sampling algorithm kernel function
  • 相关文献

参考文献12

二级参考文献121

共引文献151

同被引文献54

  • 1林舒杨,李翠华,江弋,林琛,邹权.不平衡数据的降采样方法研究[J].计算机研究与发展,2011,48(S3):47-53. 被引量:31
  • 2吴洪兴,彭宇,彭喜元.适用于不平衡样本数据处理的支持向量机方法[J].电子学报,2006,34(B12):2395-2398. 被引量:17
  • 3杨智明.面向不平衡数据的支持向量机分类方法研究[D].哈尔滨:哈尔滨工业大学,2009.
  • 4Chang Ruey-Feng; Wu Wen-Jie; Woo Kyung Moon, et al. Support vector machines for diagnosis of breast tumors on US im- ages [J]. Academic radiology, 2003, 10(2): 189-197.
  • 5Veropoulos K, Campbell C, Cristianini N. Controlling the sen- sitivity of support vector machines [C]. Proceedings of the interna- tional joint conference on artificial intelligence. 1999, 1999: 55-60.
  • 6Li D C, Liu C W, Hu Susan. A learning method for the class imbalance problem with medical data sets[J] . Computers in Biology and Medicine, 2010, 40(5):509-518.
  • 7Chang R F, Wu Wenjie, Woo K M, et al. Support vector machines for diagnosis of breast tumors on US images[J] . Academic Radiology, 2003, 10(2):189-197.
  • 8Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines[C] //Proc of International Joint Conference on Artificial Intelligence. 1999:55-60.
  • 9UC Irvine machine learning repository[EB/OL] . (2013). http://archive. ics. uci. edu/ml/.
  • 10刘万里,刘三阳,薛贞霞.不平衡支持向量机的平衡方法[J].模式识别与人工智能,2008,21(2):136-141. 被引量:15

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部