期刊文献+

基于级联二部图的动态推荐算法 被引量:3

Cascaded bi-graph based dynamic recommendation algorithm
下载PDF
导出
摘要 为了提高推荐算法的准确性,充分发挥推荐系统在实际应用中的重要作用,提出了一种基于级联二部图的推荐方法,很好地刻画了在推荐过程中用户和物品之间的复杂关系。在此基础上,充分分析了时间因素在推荐系统中所起的重要作用,将时间属性加入到级联二部图的推荐算法中,进行动态协同过滤的Top-N推荐。基于CiteULike论文数据集的实验结果表明,该方法有效地提高了推荐的准确度,表明了时间因素在推荐算法的研究中是不容忽视的。 To improve the accuracy of the recommend algorithm, and to apply the recommend system into practice, a new recommend algorithm based on the cascaded bi-graph is put forward. The relationship between users and items commendably is described. On this basis, the time factor in the recommend system is analyzed and added in the recommend algorithm based on the cascaded bi-graph to do the dynamic collaborative filtering Top-n recommendation. The performed experiment based on the dataset of CiteULike shows that the efficiency of this algorithm and proves the importance of the time factor in recommend system.
作者 蒋宗礼 陆晨
出处 《计算机工程与设计》 CSCD 北大核心 2013年第12期4356-4361,共6页 Computer Engineering and Design
关键词 推荐系统 协同过滤 图模型 动态推荐 时间效应 recommend system collaborative filtering graph model dynamic recommendation time effect
  • 相关文献

参考文献15

  • 1刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 2James Davidson,Benjamin Liebald,Liu Junning. The YouTube video recommendation system[A].2010.293-296.
  • 3曹毅,罗新星.电子商务推荐系统关键技术研究[J].湘南学院学报,2008,29(5):63-66. 被引量:3
  • 4ZHOU Renjie,Samamon Khemmarat,GAO Lixin. The impact of YouTube recommendation system on video views[A].2010.404-410.
  • 5Raymond J Mooney,Loriene Roy. Content-based book recommending using learning for text categorization[A].2000.195-240.
  • 6Souvik Debnath,Niloy Ganguly,Pabitra Mitra. Feature weighting in content based recommendation system using social network analysis[A].2008.1041-1042.
  • 7Yehude Koren. Factorization meets the neighborhood:A multifaceted collaborative filtering model[A].2008.426-434.
  • 8Mukund Deshpande,George Karypis. Item based top-n recom mendation algorithms[J].Journal ACM Transactions on Information Systems TOIS Homepage archive,2004,(01):143-177.
  • 9Shumeet Baluja,Rohan Seth,Sivakumar D. Video suggestion and discovery for youtube:Taking random walks through the view gragh[A].2008.895-904.
  • 10Xiang Liang,Yuan Quan,Zhao Shiwan. Temporal recommendation on graphs via long-and short-term preference fusion[A].2010.723-732.

二级参考文献156

  • 1黎星星,黄小琴,朱庆生.电子商务推荐系统研究[J].计算机工程与科学,2004,26(5):7-10. 被引量:46
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 4刘平峰,聂规划,陈冬林.基于知识的电子商务智能推荐系统平台设计[J].计算机工程与应用,2007,43(19):199-201. 被引量:19
  • 5Resnick and Varian. Recommender systems[J]. Communications of the ACM, 1997,40(3):56- 58.
  • 6Resnick P, Iacovou N, Suchak M, et al. Group lens : an open architecture for collaborative fihering of netnews[ A]. Proceedings of the Conference on Computer Supported Cooperative Work[ C]. Chapel Hill, NC, 1994,175- 186.
  • 7Goldbergd, Nichols D, Okib M, et al. Using collaborative filtering to weave an information apestry[ J] .Communications of the ACM, 1992,35 (12) :61 - 70.
  • 8Breese J, Hecherman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[ A]. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence ( UAI - 98) [ C]. 1998,43 - 52.
  • 9Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[ C]. In: Proceedings of the Tenth International World Wide Web Conference,2001,285 -295.
  • 10Ben J, Konstan J A, John R. E-commerce recommendation applications[ R]. University of Minnesota,2001.

共引文献537

同被引文献40

  • 1姜波,张晓筱,潘伟丰.基于二部图的服务推荐算法研究[J].华中科技大学学报(自然科学版),2013,41(S2):93-99. 被引量:6
  • 2张海燕,顾峰,姜丽红.基于模糊簇的个性化推荐方法[J].计算机工程,2006,32(12):65-67. 被引量:7
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 5让·梅松纳夫.群体动力学[M].北京:商务印书馆,1997.
  • 6LIFSHITZEM,PITAVEVSKIILP.PhysicalKinetics[M].[S.1.]:世界图书出版公司,1999.
  • 7WEISS J B, BERMER E S, JOHNSON K B, et al. Recom- mendations for the design, implementation and evaluation of so- cial support in online communities, networks, and groups [ J]. Journal of Biomedical Informatics, 2013, 46 (6) : 970-976.
  • 8BENGHOZI P J, et al. The long tail: myth or reality? [J]. International Journal of Arts Management, 2010, 12 (3) : 43- 53.
  • 9FENNER T, LEYENE M. , LO1ZOU G. Predicting the long tail of book sales: unearthing the ower-law exponent [ J ]. Physica A-statistical Mechanics and Its Applications, 2010, 389 (12): 2416-2421.
  • 10SKIERA B, ECKERT J, HINZ O. An analysis of the impor- tance of the long tail in search engine marketing [ J ]. Elec- tronic Commerce Research and Applications, 2010, 9 ( 6 ) : 488-494.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部