期刊文献+

改进的自适应新生目标强度PHD滤波 被引量:12

Improved adaptive target birth intensity for PHD filter
下载PDF
导出
摘要 自适应新生目标强度(probability hypothesis density,PHD)滤波是一种新颖的量测驱动的多目标跟踪算法。然而,该算法存在归一化失衡问题,且在航迹生成方面存在一定的滞后现象。针对以上问题,提出一种改进算法。首先,在分析归一化失衡问题的基础上,提出一种归一化因子修正方法,有效解决该问题。其次,在高斯混合框架下对算法进行实现,并引入一种新的航迹回溯机制,通过对每个高斯分量进行标记,然后对存在概率超过确认门限的分量进行回溯,从而得到每个目标的完整航迹。实验结果表明,改进算法在新生目标搜索和多目标航迹生成方面均优于传统算法,具有良好的工程应用前景。 The adaptive target birth intensity probability hypothesis density (PHD) filter is a novel measurement-driven algorithm for multi-target tracking. However, there is a normalized unbalance problem and some lags of the extracted tracks in the filter. To solve these problems, an improved algorithm is proposed. Firstly, a modified normalized factor is proposed based on the analysis of the normalized unbalance problem. Secondly, a Gaussian mixture implementation is proposed, and then a recalling procedure for track maintenance is developed, which labels each Gaussian component and recalls the previous tracks for the components with existence probabilities larger than the confirm threshold. The simulation results show that the improved algorithm has the advantages over the ordinary one in the aspects of newborn target searching and multi-target track extracting, implying good application prospect.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2452-2458,共7页 Systems Engineering and Electronics
基金 中国博士后基金(2012M521713)资助课题
关键词 随机集 概率假设密度滤波 量测驱动 多目标跟踪 random finite set probability hypothesis density (PHD) filter measurement-driven multi-tar-get tracking
  • 相关文献

参考文献20

  • 1Goodman I, Mahler R, Nguyen H. Mathematics of data fusion[M]. MA: Kluwer, 1997.
  • 2Mahler R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Trans. on Aerospace and Electronic Sys- tems, 2003, 39(4): 1152-1178.
  • 3Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for Bayesian multi target filtering with random finite sets [J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41(4) : 1224- 1245.
  • 4Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Trans. on Signal Processing, 2006, 54(11) : 4091 -4104.
  • 5Ouyang C, Ji H B, Guo Z Q. Extensions of the SMC PHD fil- ters for jump Markov systems [J]. Signal Processing, 2011, 92(6) : 1422 - 1430.
  • 6谭顺成,王国宏,王娜,贾舒宜.基于PHD滤波和数据关联的多目标跟踪[J].系统工程与电子技术,2011,33(4):734-737. 被引量:6
  • 7罗少华,徐晖,徐洋,安玮.基于UT变换的MMPHD机动目标跟踪[J].系统工程与电子技术,2012,34(4):666-672. 被引量:2
  • 8Vo B N, Vo B T, Mahler R. Closed form solutions to forward- backward smoothing[J]. IEEE Trans. on Signal Processing, 2012, 60(1): 2-17.
  • 9Yazdian D M, Azimifar Z, Masnadi S M A. Competitive Gaussi- an mixture probability hypothesis density filter for multiple tar get tracking in the presence of ambiguity and occlusion[J]. IET Radar, Sonar & Navigation, 2012, 6(4) : 251 - 262.
  • 10Chen X, Tharmarasa R, Pelletier M, et al. Integrated clutter esti-mation and target tracking using poisson point processes[J]. IEEE Trans. onAerospace and Electronic Systems, 2012, 48(2) : 1210 - 1235.

二级参考文献26

  • 1Puranik S, Tugnait J K. Tracking of multiple maneuvering tar-gets using multiscan JPDA and IMM filtering[J]. IEEE Trans. on Aerospace and Electronic Systems, 2007,43 (1) : 23 - 35.
  • 2Blackman S S, Co R, Segundo CA EI. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine ,2004,19(1) :5 - 18.
  • 3Joo S W, Chellappa R. A multiple-hypothesis approach for mul- tiobiect visual tracking[J]. IEEE Trans. on Image Processing, 2007,16(11) :2849 - 2854.
  • 4Mahler R. Multitarget Bayes filtering via first order multitarget- moments[J]. IEEE Trans. on Aerospace and Electronic Sys- tems,2003,39(4) :1152 - 1178.
  • 5Panta K, Vo B, Singb S. Improved probability hypothesis density (PHD) filter for multitarget traeking[ C]//Proc, of the 3rd Inter- national Conference on Intelligent Sensing and Information Process- ing, 2005 : 213 - 218.
  • 6Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets[J]. IEEE Trans. on Aerospace and Electronic" Systems, 2008 : 44 (1) : 87 - 98.
  • 7Vo B, Singh S, Doucet A. Sequential Monte Carlo implementa- tion of the PHD filter for multi-target tracking[C]//Proc, of Fusion ,2003: 792 - 799.
  • 8Daniel E C, Judith B. Convergence results for the particle PHD fil- ter[J]. IEEE Trans. on Signal Processing ,2006,54(7) :2652 - 2661.
  • 9Ristic B, Arulampalam S, Gordon N. Beyond the Kalman filter: particle filters for tracking application [M]. Boston London: Artech House, 2004.
  • 10Lin L, Bar-Shalom Y, Kirubarajan T. Data association combined with the probability hypothesis density filter for multitarget traeldng[C]// Proc. of the International Society for Optical Engineering Confer- ence on Signal and Data Processing on Small Targets , 2004.

共引文献6

同被引文献143

  • 1邓小龙,谢剑英,倪宏伟.Improved Particle Filter for Target Tracking[J].Chinese Journal of Aeronautics,2005,18(2):166-170. 被引量:4
  • 2宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 3Moyer L R,Spak J,Lamanna P. A multi-dimensional Houghtransform-based track-before-detect technique for detecting weaktargets in strong clutter backgrounds[J]. IEEE Trans, on Aero-space and Electronic Systems , 2011, 47(4) : 3062 -3068.
  • 4Deng X,Bi R, Liu H. Threshold setting of track-before-detectbased on dynamic programming for radar target detection[C] //Proc. of the IET International Radar Conference , 2013 : 1-4.
  • 5Huang D, Xue A,Guo Y. A particle filter track-before-detectalgorithm for multi-radar system[J]. Electronics and ElectricalEngineering , 2013 , 19(5) : 3-8.
  • 6Grossi E,Lops M,Venturino L. Track-before-detect with cen-sored observations[C] // Proc. of the International Conferenceon Acoustics , Speech, and Signal Processing ( JCASSP) , 2012 :3941 - 3944.
  • 7Zhan R,Zhang J. Improved multitarget track-before-detect forimage measurements[C]//Proc. of the llth IEEE InternationalCon ference on Signal Processing (ICSP), 2012 : 2183 - 2187.
  • 8Lehmann F,Sudparis T. Recursive Bayesian filtering for multi-target track-before-detect in passive radars[J]. IEEE Trans, onAerospace and Electronic Systems , 2012,48(3): 2458 - 2480.
  • 9Mahler R. Multitarget Bayes filtering via first-order multitargetmoments[J]. IEEE Trans, on Aerospace and Electronic Sys-tems t 2003, 39(4): 1125 - 1178.
  • 10Vo B N,Ma W K. Sequential Monte Carlo methods for multi-target filtering with random finite sets [J]. IEEE Trans, onAerospace and Electronic Systems . 2005,41(4) : 1224 - 1245.

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部