期刊文献+

基于证据理论的目标识别方法 被引量:11

Target recognition method based on evidence theory
下载PDF
导出
摘要 当目标识别系统中传感器信息高度冲突时,仅利用D-S组合规则无法有效融合。提出一种基于证据理论的目标识别方法,该方法首先定义了冲突系数,在此基础上设计了目标识别方法。当冲突较小时,直接利用D-S组合规则进行融合识别;反之,根据冲突的具体情况对证据先折扣再融合识别。通过目标识别仿真实验与其他识别方法进行了比较,实验结果表明所提方法提高了抗干扰能力,具有较快的收敛速度。 When the sensor information of the target recognition system is highly conflict, integration can not be effectively carried out only using the D-S combination rule. A target recognitive method based on evi-dence theory is presented. On the basis of defining a conflict coefficient, a target recognitive method is designed. When conflict is low, the D-S combination rule is used directly. On the contrary,according to the specific cir-cumstances of conflict evidence, the evidence is discounted firstly and then is fused and intergrated. Compared with other methods, simulation experimental results show that this proposed method can improve the anti-jam-ming ability and has a faster convergence speed.
作者 张燕君 龙呈
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2467-2470,共4页 Systems Engineering and Electronics
基金 河北省科学技术研究与发展计划应用基础研究计划重点研究基础项目(No.11963545D)资助课题
关键词 信息融合 目标识别 证据理论 冲突系数 information fusion target recognition evidence theory conflict coefficient
  • 相关文献

参考文献16

  • 1Sharer G. A mathematical theory of evidence [M]. Princeton: Princeton University Press, 1976.
  • 2Murphy R R. Dempster-Shafer theory for sensor fusion in auton- omous mobile robots[J]. IEEE Trans. on Robotics and Auto- mation, 1998, 14(2): 197-206.
  • 3Deng Y, Shi W K, Zhu Z F, et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems, 2004, 38(3): 489-493.
  • 4Aliev R, Pedrycz W, Fazlollahi B, et al. Fuzzy logic-based gen- eralized decision theory with imperfect information[J]. Infor- mation Sciences, 2012, 189 (4) : 18 - 42.
  • 5Denux T. Conjunctive and disjunctive combination of belief func- tions induced by nondistinct bodies of evidence[J]. Artificial Intelligence, 2008,172(2/3) : 234 - 264.
  • 6Jiang W, Peng J Y, Deng Y. A new method to determine BPA in evidence theory[J]. Journal of Computers, 2011, 6(6): 1162 - 1167.
  • 7Ghasemi J, Ghaderi R, Karami Moilaei M R, et al. A novel fuzzy Dempster-Shafer inference system for brain MRI segmentation[J]. Information Sciences, 2013,223(2) :205 - 220.
  • 8Klein J, Lecomte C, Miche P. Hierarchical and conditional combina tion of belief functions induced by visual tracking[J]. International Journal of Approximate Reasoning,2010, 51 (4) : 410 - 428.
  • 9Deng Y, Jiang W, Sadiq R. Modeling contaminant intrusion in water distribution networks: a new similarity-based DST method[J]. Ex- pert Systems with Application, 2011, 38(1) :571 - 578.
  • 10Liu W. Conflict analysis and merging operators selection in pos- sibility theory[C]// Proc. of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Un- certainty, 2007: 816 - 827.

二级参考文献44

  • 1杜峰,施文康,邓勇.证据特征提取及其在证据理论改进中的应用[J].上海交通大学学报,2004,38(z1):164-168. 被引量:19
  • 2邓勇,朱振福,钟山.基于证据理论的模糊信息融合及其在目标识别中的应用[J].航空学报,2005,26(6):754-758. 被引量:63
  • 3郭华伟,施文康,邓勇,陈智军.证据冲突:丢弃,发现或化解?[J].系统工程与电子技术,2007,29(6):890-898. 被引量:55
  • 4Smets P. Belief Functions. Non-Standard Logics for Automated Reasoning, 1988, 253 - 286.
  • 5Zadeh L. A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination. AI Magazine, 1986, 7 : 85 - 90.
  • 6Smets P. The Combination of Evidence in the Transferable Belief Model. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990. 6(4) : 447 -458.
  • 7Yager R. On the Dempster-Shafer Framework and New Combination Rules. Information Sciences, 1987, 41 (2) : 93 - 138.
  • 8Lefevre E, Colot O, Vannoorenberghe P. Belief Function Combination and Conflict Management. Information Fusion, 2002, 3 (3) : 149 - 162.
  • 9Deng Yong, Shi Wenkang, Liu Qi. Combining Belief Functions Based on Distance Function. Decision Support Systems, 2004, 38 : 489 - 493.
  • 10Jousselme A L, Grenier D, Bosse E. A New Distance Berween Two Bodies of Evidence. Information Fusion, 2001,2 (1) : 90 - 101.

共引文献68

同被引文献90

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部