期刊文献+

面向SAR图像目标识别的鲁棒处理算法 被引量:3

Robust processing algorithm for SAR image target recognition
下载PDF
导出
摘要 现有合成孔径雷达图像的目标识别方法通常要进行预处理,预处理对于识别率影响较大。但是,针对不同的合成孔径雷达目标图像,预处理算法的自适应性很难得到保证。将基于核的主成分分析与稀疏表示相结合,只需很少的观测数据就能得到高识别率的目标识别结果,节省了数据存储量和计算量。首先,阐述了压缩感知的基本理论;其次,提出了基于核主成分分析和稀疏表示的合成孔径雷达图像目标识别算法;最后,选取MSTAR数据库中的5类目标进行实验。仿真结果表明,在没有方位角预测的情况下,该算法仍能有效地识别目标,与其他识别算法相比,在同等噪声污染的图像下,具有较高的识别率。 With the existing synthetic aperture radar (SAR) image target recognition algorithm, image pre-processing has to be usually carried out. Preprocessing has a significant impact on the recognition rate. Howev-er, the adaptability of the preprocessing algorithm is difficult to be guaranteed. This paper proposes to apply the theory of kernel principal component analysis (KPCA) and sparse representation to the image to he recognited, thus achieving a target recognition result possessing a high recognition rate with only a few observation data and saving the data storage and computation. This paper describes the basic theory of compressed sensing first, and proposes an SAR image target recognition algorithm based on KPCA and sparse representation. An experiment is carried out with five kinds of SAR targets in the MSTAR database. The simulation results show that this pro-posed algorithm is still able to recognize the target effectively without prediction of the attitude angle. Compared with other recognition algorithms, it has a higher recognition rate to the image under the noise pollution on an e-qual basis.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2489-2494,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61203170) 中国博士后基金特别资助(2013T60539) 江苏省普通高校研究生科研创新计划(CXLX12_0160)资助课题
关键词 目标识别 压缩感知 稀疏表示 核主成分分析 合成孔径雷达图像 target recognition compressed sensing sparse representation kernel principal component a-nalysis (KPCA) synthetic aperture radar (SAR) image
  • 相关文献

参考文献18

  • 1Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly imcomplete frequency in- formation[J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.
  • 2Candes E, Tao T. Near optimal signal recovery from random projeetions: universal encoding strategies[J]. IEEE Trans. on Information Theory, 2006, 52(12) : 5406 - 5425.
  • 3Donoho D. Compressed sensing[J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306.
  • 4Starck J, Elad M, Donoho D. Image decomposition via the combina tion of sparse representations and a variational approach[J]. IEEE Trans. on Image Processing, 2005, 14(10) : 1570 - 1582.
  • 5Patel V, Easley G, Healy D. Compressed sensing for synthetic aperture radar imaging[C]//Proc, of the 16th IEEE Interna- tional Conference on Image Processing, 2009 : 2141 - 2144.
  • 6颜学颖,焦李成,王凌霞,万红林.一种提高SAR图像分割性能的新方法[J].电子与信息学报,2011,33(7):1700-1705. 被引量:10
  • 7Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210- 227.
  • 8李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 9彭义刚,索津莉,戴琼海,徐文立.从压缩传感到低秩矩阵恢复:理论与应用[J].自动化学报,2013,39(7):981-994. 被引量:80
  • 10Jing Li JunzhengWang Wei Shen.Moving object detection in framework of compressive sampling[J].Journal of Systems Engineering and Electronics,2010,21(5):740-745. 被引量:1

二级参考文献99

  • 1Henri Maitre[法].合成孔径雷达图像处理.北京:电子工业出版社,2005
  • 2Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 4Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 5Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 6Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 7Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 8Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 9Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 10Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.

共引文献312

同被引文献12

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部