期刊文献+

ZnO纳米颗粒表面缺陷对有机太阳能电池性能的影响 被引量:7

Effects of ZnO nanoparticles surface defects on organic solar cell performance
原文传递
导出
摘要 用温度控制ZnO纳米颗粒粒径的大小,研究了颗粒粒径对表面缺陷的影响。由透射电镜(TEM)、紫外-吸收光谱和荧光光谱测试表明,随着反应温度升高,ZnO纳米颗粒的尺寸增加,比表面积显著下降,表面缺陷的体密度降低。将不同反应温度下的ZnO纳米颗粒应用于ITO/ZnO/P3HT:PCBM/MoO3/Ag结构的有机太阳能电池中,进一步研究了缺陷对电池性能的影响。实验结果表明,60℃下ZnO纳米颗粒薄膜作为电子传输层的器件效果最好,电池效率可以达到3.05%。这表明在一定范围内,ZnO纳米颗粒越大,缺陷密度越低,越有利于器件中电子的传输从而提高太阳能电池器件的短路电流密度和光电转化效率。 ZnO exhibits a remarkable potential application in organic solar cells as an electronic transfer layer. However,the large numbers of defects on nanomaterials surface will trap electron and then de- crease the photocurrent of the device. In this research, we fabricated different sizes of ZnO nanoparticles under different reaction temperatures. The impact of the particle size on the surface defects is further studied. The morphologies and optical properties are researched by transmission electron microscopy (TEM) ,ultraviolet-visible absorption spectra and the fluorescence spectra. Analysis results showed the size and the specific surface area increase with the increase of reaction temperature, while the defect density of ZnO nanoparticles is decreased. Finally, ZnO nanoparticles with different reaction temperatures were incorporated in the organic photovoltaic devices as electron conductive layer, and the optimized device (60 ℃ ) shows the highest power conversion efficiency of 3.05 %. It is indicated that the grown particles result in the decrease of surface defects density, which is favorable to the electron transfer and device performance improvement.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第12期2295-2300,共6页 Journal of Optoelectronics·Laser
基金 科技创新体系及条件平台建设计划(10SYSYJC28100) 天津市应用基础及前沿技术研究计划青年基金(12JCQNJC01300) 天津市高等学校科技发展基金计划(20100723)资助项目
关键词 有机太阳能电池 缓冲层 ZnO纳米颗粒缺陷 organic solar cell buffer layer ZnO nanoparticles defects
  • 相关文献

参考文献24

  • 1LI Wei-min,GUO Jin-chuan, ZHOU Bin. Theoretics andexpermental study on solar cells with P3HT/PCBM-baseheterojunction interface [J]. Solar energy materials andsolar cells,2012,23(007) :1274-1278.
  • 2李卫民,郭金川,周彬.基于P3HT/PCBM异质结界面太阳能电池的理论及实验研究[J].光电子.激光,2012,23(7):1274-1278. 被引量:4
  • 3MA C Y,Qin W J,Yin S G,et al. Ptasmon-enhanced or-ganic solar cells with solution-processed three-dimension-al Ag nanosheets [J]. Solar Energy Materials and SolarCells,2013,109:227-232.
  • 4WU Bin,LI Yan-wu, LIU Peng-yi, et al. Common and In-verter hereojunction small -molecule organic solar cellJournal of Optelectronic . Laser,2010,21(3) :363-365.
  • 5吴冰,李艳武,刘彭义,侯林涛.正置倒置异质结有机小分子太阳能电池[J].光电子.激光,2010,21(3):363-365. 被引量:5
  • 6Zhou Y H,Li F H,Zhang F L,et al. Inverted and transpar-ent polymer solar cells prepared with vacuum-free pro-cessing [J]. Solar Energy Materials and Solar Cells,2009,93(4):497-500.
  • 7Chou C H,Kwan W L,Yang Y,et al. A metal-oxide inter-connection layer for polymer tandem solar cells with aninverted architecture [J]. Advanced Materials, 2011,23(10):1282-1286.
  • 8SONG Peng-fei,QIN Wen-jing, DING Cuo-jing, et al. Anair-stable inverted photovoltaic device using Zn〇 as theelectron selective layer and Mo03 as the blocking layer[J]. Optoelectronics Letters,2011,7(5) *330-333.
  • 9Seo H 0,Park S Y,Lim D C,et al. Ultrathin Ti02 films onZnO electron-collecting layers of inverted organic solarcell[J]. The Journal of Physical Chemistry C, 2011,115(43):21517-21520.
  • 10Dhungel S K,Park J G. Optimization of paste formulationfor Ti〇2 nanoparticles with wide range of size distributionfor its application in dye sensitized solar cells[J]. Renew-able Energy,2010,35(12) :2776-2780.

二级参考文献34

  • 1Shrotriya V,Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells[J].Appl Phys Lett, 2006,88(7) :073508.
  • 2Kim J Y, Kim S H, Lee H H, et ai. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spaceri[J].Adv Mater, 2006,18 (5) : 572-576.
  • 3Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J].Nature,2004 ,428,911-918.
  • 4Kim J Y, Lee K ,Coates N E,et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007,317 : 222-225.
  • 5Irwin M D, Buchholz D B, Hains A W, et al. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells[J].Chemistry,2008,105(8) :2783-2"787.
  • 6Chan M Y,Lai S L, Fung M K,et al. Doping-induced efficiency enhancement in organic photovoltaic devices[J].Appl Phys Lett,2007,90(2) :023504.
  • 7Li G,Chu C W,Shrotriya V,et al. Efficient inverted polymer solar cells[J]. Appl Phys Lett,2006,88(25) : 253503.
  • 8Kyaw A K K,Sun X W, Jiang C Y,et al. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer[J]. Appl Phys Lett,2008,93..221107.
  • 9Frankea R, Maenniga B, Petrichb A, et al Long-term stability of tandem solar cells containing small organic molecules[J]. Solar Energy Materials & Solar Cells,2008,92 : 732-735.
  • 10TAO Chen,RUAN Sheng-ping,XlE Guo-hua,et al. Role of tungsten oxide in inverted polymer solar cells[J]. Appl Phys Lett, 2009,94:043311.

共引文献7

同被引文献54

  • 1车广波,刘春波,徐占林,李文连,孔治国,王庆伟.A novel Cu(I) complex based organic ultraviolet optical sensor[J].Optoelectronics Letters,2009,5(1):14-17. 被引量:2
  • 2WANG ChunXiao1,2,ZHANG XiaoDan1,WANG DongFeng1,YANG ZhenHua1,2,JI WeiWei1,ZHANG CunShan2 & ZHAO Ying1 1 Institute of Photo-electronic Thin Film Devices and Technology of Nankai University,Key Laboratory of Photo-electronic Information Science and Technology(Nankai University),Ministry of Education,Tianjin 300071,China,2 College of Information Engineering,Hebei University of Technology,Tianjin 300130,China.Synthesis of nanostructural ZnO using hydrothermal method for dye-sensitized solar cells[J].Science China(Technological Sciences),2010,53(4):1146-1149. 被引量:8
  • 3Eric A Meulenkamp. Electron transport in nanoparticulate ZnO films[J]. The Journal of Physical Chemistry B, ]999, 103(37) : 7831-7838.
  • 4Bauer C, Boschloo G, Mukhtar E, et el. Electron injection and recombination in Ru (dcbpy)z (NCS)z sensitized nanostructured ZnO[J]. The Journal of Physical Chemis- try B,2001,105(24) :5585-5588.
  • 5Hosono E, Fujihara S, Kimura T. Synthesis, structure andphotoelectrochemical performance of micro/nano-tex- tured ZnO/eosin Y electrodes [J]. Electrochimica Acta, 2004,49 (14) : 2287-2293.
  • 6LI Hui, BAI Jia-fan, FENG Bo. Dye-sensitized solar cells with a tri-ayer ZnO photo-eletrode[J]. Journal of Alloys and Compounds, 2013,578(25) : 507-51 1.
  • 7KUNG Chung-wei, CHEN Hsin-wei, LIN Chia-yu. Electro- chemical synthesis of a double-layer film of 7nO nanoshe- ets/nanoparticles and its application for dye-sensitized solar cells [J]. Progress in Photovoltacs, 20]4,22 ( 4 ) : 440-451.
  • 8Lee Ming-kwei, Yen Han,Cheng Nai-Roug. Efficiency en- hancement of DSSC with aqueous solution deposited ZnO nanotip array [J]. leee Photonics Technology Letters, 2014,26:454-456.
  • 9Chen Lu-lu, Li Xiao-dong, Qu Li-li, et aI.Facile and fast one-pot synthesis of ultra-long porous ZnO nanowire ar- rays for efficient dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2014,586 : 766-772.
  • 10Das Partha Pratim,Agarkar Shruti A, Mukhopadhyay Sou- mita ,et al. Defects in chemically synthesizes and thermal- ly processed ZnO nanorods implications for active layer properties in dye-sensitized solar cells [J]. Inorganic Chemistry,2014,53(8) : 3961-3972.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部