期刊文献+

光纤传感信号中小波去噪的最优分解尺度确定方法 被引量:5

Determination of the optimal decomposition scale in wavelet denoising of optical fiber sensing signal
原文传递
导出
摘要 小波分解尺度选择是小波去噪中的关键,分解尺度过大或过小,都会直接影响传感信号去噪的质量。本文通过分析常规的分解尺度选择方法,引用指标融合算法原理从图形和统计两个角度出发选用信噪比(SNR)、均方根误差(RMSE)、平滑度r以及信号偏差(BIAS)4项评价指标融合成一项指标,采用指数函数对融合指标进行拟合,并提出一种拐点判别公式来准确判定最优分解尺度。然后,采用所提方法,结合改进的阈值和阈值函数,对实验信号进行最佳分解尺度寻优,实验验证结果表明,本文方法所确定的最优分解尺度对应的中心波长反射率与实际值相符,因此能够获得更优的去噪效果。 In demodulating process of optical fiber sensing, the existence of the noise is inevitable, seriously affecting system's precision to demodulate central wavelength. The wavelet de-noising method with its good ability of time-frequency localization, multi-resolution analysis and handling nonlinear problem in the field of optical fiber sensing de-noising has been widely used,and it is crucial to select the optimization decomposition scale, since the decomposition scale will affect the quality of denoising directly. Based on the analysis of conventional and proposed methods of decomposition scale selection, a multi-indicator fusing method is quoted to fuse signal to noise ratio, root mean square error, smoothness and bias of signal into a comprehensive evaluating indicator, and process the fusion indicator with exponential fitting algorithm and present an inflection point judgment formula to determine the optimal decomposition scale. And then, combined with better threshold and improved threshold function, with experimental signal, the best decomposition scale is chosen in this presented method. The experimental results show that the reflectivity rate of central wavelength, with optimal decomposition scale selected in this method, is consistent with the real values. Thus, the proposed method shows better performance in de-noising.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第12期2372-2376,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61275077) 重庆市基础与前沿研究计划(cstc2013jcyjA40052)资助项目
关键词 小波去噪 分解尺度 平滑度 信噪比 均方根误差 wavelet de-noising decomposition scale smoothness SNR RMSE
  • 相关文献

参考文献7

二级参考文献56

共引文献96

同被引文献56

  • 1李亢,杨绍清.基于Savitzky-Golay算法的图像平滑去噪[J].数据采集与处理,2010,25(S1):72-74. 被引量:16
  • 2李培生,胡松,孙路石,孙学信.基于SG算法的燃煤微分热重曲线平滑去噪[J].华中科技大学学报(自然科学版),2005,33(7):61-64. 被引量:5
  • 3郭湛,刘凯,王怀彬.光纤传感技术用于铁轨温度监测的研究[J].光电子.激光,2006,17(11):1369-1371. 被引量:7
  • 4罗军益,李磊民,陈泉根.IIR滤波器的设计研究[J].微计算机信息,2007(25):306-308. 被引量:8
  • 5Donoho D L, Johnstone, I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81 (3) : 425-455.
  • 6Donoho D L, De-noising by soft thresholding[J]. IEEE Transactions on Information Theory, 1995,41 (3): 613-627.
  • 7Chen Y,Chen L,Liu H,et al. Research on FBG sensor sig- nal wavelength demodulation based on improved wavelet transform[J]. Optik-lnternational Journal for Light and E- lectron Optics,2013,124(21) :4802-4804.
  • 8Duarte M F, Baraniuk R G. Spectral compressive sensing [J]. Applied and Computational Harmonic Analysis, 2013, 35(1) :111-129.
  • 9Ekanadham C, Tranchina D, Simonceili E P. Recovery of sparse translation-invariant signals with continuous basis pursuit[J], IEEE Transactions on Signal Processing, 2011,59(10) : 4735-4744.
  • 10Susto G A,Beghi A. A virtual metrology system based on least angle regression and statistical clustering[J]. Ap- plied Stochastic Models in Business and Industry, 2013,2,9 (4) :362-376.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部