期刊文献+

基于统计特征的非理想虹膜图像分割方法

Segmentation of non-ideal iris image based on statistical features
原文传递
导出
摘要 由于退化条件的存在,非理想虹膜识别的关键在于正确分割虹膜区域,这一区域包含能够用于个体识别的纹理。本文提出了一种基于统计特性的非理想虹膜图像分割方法,包括内边界定位、外边界定位和眼睑检测3个阶段。在内边界定位阶段,通过高斯混合(GMM)模型及多弦长均衡策略,实现对瞳孔及虹膜中心的精确定位;在外边界定位阶段,利用简化的基于区域信息的曲线演化方法,将其与序统计滤波(OSF)结合,以确保曲线收敛至虹膜外边界;在眼睑检测阶段,利用二次曲线对眼睑进行建模。对多个数据库进行实验的结果表明,本文方法能够有效克服反光、睫毛和眼睑遮挡、外边界模糊等不利因素的影响,精确实现了非理想虹膜图像的分割。 Since the presence of the degraded conditions such as illuminative variations, eyelashes or eyelids occlusions, ambiguous outer boundary, etc, the key of recognition for non-ideal iris in real application is to correctly segment iris region which contains texture features distinguishing a person from another. In this paper, we propose the segmentation method for non-ideal iris based on statistical features of images. It consists of three phases,i, e. , inner boundary localization, outer boundary localization, and eyelids detection. In inner boundary localization, this method localizes pupil and iris center accurately by exploiting Gaussian mixture model (GMM) and multiple strings equilibrium. By GMM,multiple Gaussian distributions are evolved to fit image histogram. For this reason, GMM is adaptive among iris images in different databases. In outer boundary localization, we present the simplified region-based eurve evolution which is combined with order statistical filters (OSFs) to guarantee its convergence to exterior iris boundary. Finally in eyelids detection we employ parabola to model iris eyelids. By evaluating the data bases, this method can segment non-ideal iris accurately by eliminating undesirable reflections and eyelash /eyelid occlusions.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第12期2383-2391,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61201441) 济南市高校自主创新(201202018) 山东大学自主创新基金(2012TS085)资助项目
关键词 非理想虹膜分割 高斯混合模型(GMM) 生物特征识别 虹膜识别 non-ideal iris segmentatiom Gaussian mixture model (GMM) biometrics iris recognition
  • 相关文献

参考文献18

  • 1Daugman J. H.w iris recc^njtk奶 works[J]. IEEE Trans.Circuits and Systems for Video Technology,2004,14(1):21-30.
  • 2Bowyer K W, Hollin供worth K, Flynn P J. Ima拥-under-stancHng for iris biometrics;a sufvey[J]. Computer Visionand Image Understanding, 200$ 9110< 2) : 281-307.
  • 3ProefK^i H.Aiex.ffKfre L A. iris sogmentation methodologyfor nofvcxjoperative recognition [A]. IEE Proc. VISP[C].2006,153(2):199-205.
  • 4Pundlik S J,Woodard D L, Birchfield S T. Non-ideal irissegmentation using graph cuts[A]. Proc. IEEE CVPR[C].2008,1-6.
  • 5He Z,Tan T,Sun Z,et al. Toward accurate and fast irissegmentation for iris biometrics [J], IEEE Trans. PatternAnalysis and Machine IntelHgence,2009,31 (9) : 1670-1684.
  • 6Jarjes A A,Wang K, Mohammed G J. A new iris segmen-tation method based on improved snake model and angu-lar integral projection [J]. Research Journal of AppliedScience,Engineering and Technology, 2011,3 (6) : 558-568.
  • 7Roy K, Bhattacharya P, Suen C Y. Iris segmentation usingvariational level set method[J]. Optics and Laser in Engi-neering,2011,49(1) :578-588.
  • 8Verma A,Liu C.Jia J. Iris recognition based on robust irissegmentation and image enhancement [J]. InternationalJournal of Biometrics,2012,4(1) :56-75.
  • 9Shental N,Bar-H"lel A, Hertz T,et al. Computing Gaussi-an mixture models with EM using equivalence constraints[J]. Advances in Neural Information Processing Systems16,2004,16(8) :465-472.
  • 10Dempster A, Laird N,Robin D. Maximum likelihood fromincomplete data via the EM algorithm[J]. Journal of theRoyal Statistical Society,Series B,1977,39(l) :1-38.

二级参考文献33

  • 1李素梅,张延,常胜江,申金媛,李宜宾,王立.基于SVM实现人眼注视与否的探知[J].光电子.激光,2004,15(10):1229-1233. 被引量:10
  • 2Jacob R J K, Karn K S. Eye tracking in human-computer inter- action and usability research: Ready to deliver the promises [J]. The Mind's Eye: Cognitive and Applied Aspects of Eye Movements, 2003,573-605.
  • 3Noureddin B, Lawrence P D, Man C F. A Non-centact Device for Tracking Gaze in A Human Computer Interface[J]. Comput- er Vision and Image Understanding,2005,98:52-82.
  • 4Kim J, Park K R,Lee J J,et al. Intelligent process control via gaze detection technology[J]. Eng. Appl. Artif. Intell, 2000,13 ; 577-587.
  • 5Mason M F, Hood B M, Macrae C N. Look into my eyes: Gaze direction and person memory[ J]. Memory, 2004, 12: 637-643.
  • 6Gemmell J, Toyama K, Zitnick C, et al. Gaze awareness for video-conferencing: A software approach[J]. IEEE Multimedia, 2000,7:26-35.
  • 7Nguyen B L,Chahir Y, Jouen F. Free eye gaze tracking using Gaussian processes[A]. IPCV 2009[C]. 2009,137-141.
  • 8Baluja S, Pomerleau D. Non-intrusive gaze tracking using artifi- cial neural networks[J]. Advances in Neural Information Pro- cessing Systems, 1994,6 : 753-760.
  • 9Iwata M, Ebisawa Y. PupilMouse supported by head pose de- tection[A]. Proc VECIMS 2008[C]. 2008, 178-183.
  • 10Zhu Z, Ji Q. Novel eye gaze tracking techniques under natural head movement[A]. IEEE Transactions on Biomedical Engi- neering,2007,542246-2260.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部