期刊文献+

一种基于遗传算法的查询关键词形成技术

A Query Keywords Forming Technology Based on Genetic Algorithm
下载PDF
导出
摘要 分析针对离散的关系数据构造有效查询关键词的关键因素,并在此基础上提出一种基于遗传算法的查询关键词形成方法 GQFA(Genetic-based Query Forming Algorithm)。对于目标属性,在训练集上应用遗传算法,学习得到与目标属性强相关的属性子集,进而形成合适的查询关键词。实验结果表明,该方法形成的查询关键词能够较好地满足应用需求。 This paper analyzed the key factors of constructing effective query keywords for discrete relational data and advanced a kind of query keywords forming technology named GQFA ( Genetic-based Query Forming Algorithm ) .It learned the optimal at-tribute subset for the target attribute through applying genetic algorithm to the training data set , and then constructed the effective query keywords .Experimental results showed that the query keywords formed by this method can better meet the requirement .
出处 《计算机与现代化》 2013年第12期5-8,13,共5页 Computer and Modernization
基金 国家"973"计划基金资助项目(2012CB316203) 西北工业大学研究生种子基金资助项目(Z2013125 Z2013126)
关键词 查询 属性选择 遗传算法 知识获取 信息检索 query keywords attribute selection genetic algorithm knowledge acquisition information retrieval
  • 相关文献

参考文献13

  • 1Kwok C, Etzioni O, Weld D S. Scaling question answering to the Web [ J ]. ACM Transactions on Information Systems (TOIS), 2001,19(3) : 242-262.
  • 2Grzymala-Busse Jerzy W. Three approaches to missing attrib- ute values: A rough set perspective [M]// Data Mining: Foundations and Practice. Springer Berlin Heidelberg, 2005: 139-152.
  • 3Ramprasath M, Hariharan S. A survey on question answer- ing system[ J]. International Journal of Research and Re- views in Information Sciences ( IJRRIS), 2012,2( 1 ) : 171- 178.
  • 4Tang N, VemuriV R. Web-based knowledge acquisition to impute missing values for classification [ C ]/! Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence. 2004 : 124-130.
  • 5Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning[ M ]. Boston: Addison-Wesley, 1989.
  • 6[美]米歇尔.机器学习[M].曾华军,等译.北京:机械工业出版社,2003.
  • 7Li Z, Sharaf M A, Sitbon L, et al. WebPut: Efficient Web-based data imputation[ C]/! Proceedings of the 13th International Conference on Web Information Systems Engi- neering. 2012 : 243-256.
  • 8The Apache Software Foundation. Welcome to Apache OpenNLP[ DB/OL]. http://opennlp, apache, org/, 2013- 05-08.
  • 9Finkel J R, Grenager T, Manning C. Incorporating non-lo- cal information into information extraction systems by gibbs sampling[ C ]/! Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. 2005: 363-370.
  • 10The Stanford Natural Language Processing Group. Stanford Named Entity Recognizer (NER) [ DB/OL ]. http ://nlp. stanford, edu/software/CRF-NER, shtml, 2013-05-08.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部